A242061 Position within the triangular array A226314(n)/A054531(n) of rationals x/y such that x < y, gcd(x,y)=1, x+y odd and for the least y, {x, y} are integers such that x*y(y^2-x^2)/A006991(n) is a perfect square.
14, 2, 129, 52686, 29, 7, 9, 1274, 296125969, 12012350, 5, 1279281, 44, 302583265614, 780914, 90, 316, 2605, 106023820090609, 1754402265205275806, 7794, 72957466300254, 768323201, 40, 18505, 23, 6478321, 3966329, 326, 14280500082452241
Offset: 1
Keywords
Examples
. j {A226314(n),A054531(n)}, 1<=i<=j<=12 and n=i+j(j-1)/2 . -- -------------------------------------------------------- . 1: 1,1 . 2: 1,2 2,1 . 3: 1,3 2,3 3,1 . 4: 1,4 3,2 3,4 4,1 . 5: 1,5 2,5 3,5 4,5 5,1 . 6: 1,6 4,3 5,2 5,3 5,6 6,1 . 7: 1,7 2,7 3,7 4,7 5,7 6,7 7,1 . 8: 1,8 5,4 3,8 7,2 5,8 7,4 7,8 8,1 . 9: 1,9 2,9 7,3 4,9 5,9 8,3 7,9 8,9 9,1 . 10: 1,10 6,5 3,10 7,5 9,2 8,5 7,10 9,5 9,10 10,1 . 11: 1,11 2,11 3,11 4,11 5,11 6,11 7,11 8,11 9,11 10,11 11,1 . 12: 1,12 7,6 9,4 10,3 5,12 11,2 7,12 11,3 11,4 11,6 11,12 12,1 . a(13)=44 and A006991(13)=34 so 34 is the 13th congruent number. a(13) gives the 44th term of the triangular array at index (8, 9). This gives (x, y) as (8, 9), it generates the PPT (17, 144, 145) and has an area 6^2*34 = 1224.
Links
- Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
- Hisanori Mishima, 361 Congruent Numbers g: 1<=g<=999, Mathematician's Secret Room, Chapter 10 : Congruent Numbers (D27 Congruent numbers).
- Yoram Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.
Programs
-
Mathematica
lst1={5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61, 62, 65, 69, 70, 71, 77, 78, 79, 85, 86, 87, 93, 94, 95, 101}; getpos[n0_] := (lst=0; Do[If[IntegerQ@Sqrt[m*n(m-n)(m+n)/n0]&&OddQ[m+n] && GCD[m, n]==1, (lst=m(m-1)/2+n; Break[])], {m, 2, 5000}, {n, 1, m-1}]; lst); SetAttributes[getpos, Listable]; getpos[lst1]
Comments