cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242066 The smallest even k such that lpf_3(k-3) > lpf_3(k-1) >= p_n, where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.

This page as a plain text file.
%I A242066 #15 Sep 06 2014 01:26:28
%S A242066 16,22,34,40,70,70,70,112,112,112,130,130,142,160,184,184,202,214,310,
%T A242066 310,310,310,310,310,310,340,340,340,382,412,412,490,490,490,490,490,
%U A242066 502,544,544,544,574,580,634,634,634,754,754,754,754,754,754,754,772
%N A242066 The smallest even k such that lpf_3(k-3) > lpf_3(k-1) >= p_n, where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.
%C A242066 a(n)-3 and (a(n)-1)/3 are primes.
%t A242066 lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];(*least prime factor*)
%t A242066 lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]];
%t A242066 Table[NestWhile[#+2&,2,!(lpf3[#-3]>lpf3[#-1]>=Prime[n])&],{n,3,100}] (* _Peter J. C. Moses_, Aug 14 2014 *)
%Y A242066 Cf. A242057, A242058, A242059, A242060, A242064, A242065, A242033, A242034, A242036, A242037.
%K A242066 nonn
%O A242066 3,1
%A A242066 _Vladimir Shevelev_, Aug 13 2014