A242068 First of two consecutive sphenic numbers with no semiprime between them.
102, 170, 230, 238, 255, 282, 285, 366, 399, 429, 430, 434, 438, 598, 602, 606, 609, 615, 638, 642, 645, 651, 663, 741, 759, 805, 822, 826, 854, 902, 935, 969, 986, 1001, 1022, 1030, 1065, 1085, 1086, 1102, 1105, 1130, 1178, 1182, 1221, 1245, 1265, 1295, 1309, 1310, 1334, 1358, 1374, 1406, 1419, 1426, 1434
Offset: 1
Keywords
Examples
102=2*3*17 and 105=3*5*7 are sphenic numbers, i.e., products of three distinct primes, and neither 103 (a prime) nor 104=2^3*13 is a semiprime, so 102 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..8683
Programs
-
Maple
N:= 10000: # to get all terms where the next sphenic number <= N Sphenics:= select(t -> (map(s->s[2],ifactors(t)[2])=[1,1,1]), {$1..N}): Primes:= select(isprime,{2,seq(2*i+1,i=1..floor(N/2))}): Semiprimes:= {seq(seq(p*q,q=select(`<=`,Primes,N/p)),p=Primes)}: map(proc(i) if nops(Semiprimes intersect {$Sphenics[i]..Sphenics[i+1]}) = 0 then Sphenics[i] else NULL fi end proc, [$1..nops(Sphenics)-1]);
-
Mathematica
sw = Switch[FactorInteger[#][[All, 2]], {1, 1}, {#, 2}, {1, 1, 1}, {#, 3}, _, Nothing]& /@ Range[10^4]; sp = SequencePosition[sw, {{, 3}, {, 3}}][[All, 1]]; sw[[sp]][[All, 1]] (* Jean-François Alcover, Sep 26 2020 *)
Comments