cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242070 Decimal expansion of the supremum of all real s such that zeta'(s+i*t) = 0 for some real t.

Original entry on oeis.org

2, 8, 1, 3, 0, 1, 4, 0, 2, 0, 2, 5, 2, 8, 9, 8, 3, 6, 7, 5, 2, 7, 2, 5, 5, 4, 0, 1, 2, 1, 6, 6, 8, 6, 9, 6, 3, 8, 4, 6, 1, 4, 0, 5, 6, 0, 5, 4, 0, 2, 6, 2, 2, 1, 5, 2, 6, 6, 4, 3, 8, 7, 4, 0, 4, 7, 1, 5, 0, 8, 3, 6, 8, 9, 2, 3, 7, 0, 7, 9, 9, 5, 8, 4, 0, 2, 0, 7, 1, 8, 2, 6, 3, 6, 9, 6, 0, 5, 4, 1
Offset: 1

Views

Author

Jean-François Alcover, Aug 14 2014

Keywords

Examples

			2.81301402025289836752725540121668696384614056054026221526643874...
		

Crossrefs

Cf. A242069.

Programs

  • Mathematica
    y /. FindRoot[Zeta'[y]/Zeta[y] == -2^(y + 1)*Log[2]/(4^y - 1), {y, 2}, WorkingPrecision -> 100] // RealDigits // First

Formula

The unique solution y > 1 of the equation zeta'(y)/zeta(y) = -2^(y + 1)*log(2)/(4^y - 1).

A246844 Decimal expansion of t_0, the lower bound of the conjectured first interval [t_0, t_1] where the real part of zeta(1+i*t) is negative.

Original entry on oeis.org

6, 8, 2, 1, 1, 2, 8, 9, 1, 3, 3, 8, 2, 3, 9, 9, 4, 1, 1, 5, 9, 5, 5, 6, 8, 2, 8, 8, 0, 4, 4, 3, 0, 0, 3, 4, 7, 1, 1, 7, 7, 7, 7, 5, 6, 1, 3, 7, 8, 7, 5, 3, 0, 9, 2, 0, 4, 2, 5, 9, 2, 8, 4, 4, 1, 0, 0, 0, 3, 5, 4, 7, 4, 4, 7, 5, 1, 8, 7, 0, 0, 0, 1, 2, 1, 0, 9, 2, 7, 1, 3, 8, 9, 3, 2, 8, 6, 6, 4
Offset: 6

Views

Author

Jean-François Alcover, Sep 05 2014

Keywords

Examples

			682112.8913382399411595568288044300347117777561378753092...
		

Crossrefs

Programs

  • Mathematica
    t0 = t /. FindRoot[Re[Zeta[1 + I*t]] == 0, {t, 682112.891 }, WorkingPrecision -> 120]; RealDigits[t0, 10, 99] // First

A246845 Decimal expansion of t_1, the upper bound of the conjectured first interval [t_0, t_1] where the real part of zeta(1+i*t) is negative.

Original entry on oeis.org

6, 8, 2, 1, 1, 2, 9, 4, 4, 2, 5, 0, 4, 9, 1, 7, 6, 2, 4, 3, 9, 0, 2, 2, 6, 7, 4, 3, 9, 4, 9, 3, 6, 9, 0, 7, 3, 8, 2, 8, 5, 6, 4, 4, 8, 1, 1, 0, 3, 4, 9, 1, 5, 1, 5, 0, 5, 8, 0, 5, 3, 5, 1, 5, 9, 0, 4, 0, 0, 6, 8, 9, 7, 6, 5, 0, 2, 3, 3, 5, 3, 6, 1, 8, 7, 7, 1, 8, 7, 0, 3, 6, 9, 0, 1, 6, 9, 6, 9
Offset: 6

Views

Author

Jean-François Alcover, Sep 05 2014

Keywords

Examples

			682112.9442504917624390226743949369073828564481103491515...
		

Crossrefs

Programs

  • Mathematica
    t1 = t /. FindRoot[Re[Zeta[1 + I*t]] == 0, {t, 682112.944 }, WorkingPrecision -> 120]; RealDigits[t1, 10, 99] // First
Showing 1-3 of 3 results.