cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242087 Number of balanced orbitals over an odd number of sectors.

Original entry on oeis.org

1, 0, 6, 6, 36, 88, 376, 1096, 4476, 14200, 57284, 190206, 764812, 2615268, 10499504, 36677626, 147110276, 522288944
Offset: 0

Views

Author

Peter Luschny, May 04 2014

Keywords

Comments

See A241810 and A232500 for the combinatorial definitions.

Programs

  • Mathematica
    np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--]; For[j=Length[z],z[[j]]<=z[[i-1]],j--]; Join[Take[z,i-2],{z[[j]]}, Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]]; o=Table[1,{16}];
    Print[1]; Do[p=Join[-Take[o,n],{0},Take[o,n]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++]; p=np[p],{(2*n+1)!/(2*n!^2)}]; Print[2*c],{n,16}]
    (* Hans Havermann, May 10 2014 *)
  • Sage
    def A242087(n):
        if n == 0: return 1
        A = 0; T = [0]
        for i in (1..n):
            T.append(-1); T.append(1)
        for p in Permutations(T):
            P = 0; S = 0
            for k in (0..2*n):
                P += p[k]; S += P
            if S == 0: A += 1
        return A
    [A242087(n) for n in (0..10)]

Formula

a(n) = A241810(2*n+1).

Extensions

More terms from Hans Havermann, May 10 2014
a(17) from Hans Havermann, May 23 2014