A242087 Number of balanced orbitals over an odd number of sectors.
1, 0, 6, 6, 36, 88, 376, 1096, 4476, 14200, 57284, 190206, 764812, 2615268, 10499504, 36677626, 147110276, 522288944
Offset: 0
Programs
-
Mathematica
np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--]; For[j=Length[z],z[[j]]<=z[[i-1]],j--]; Join[Take[z,i-2],{z[[j]]}, Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]]; o=Table[1,{16}]; Print[1]; Do[p=Join[-Take[o,n],{0},Take[o,n]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++]; p=np[p],{(2*n+1)!/(2*n!^2)}]; Print[2*c],{n,16}] (* Hans Havermann, May 10 2014 *)
-
Sage
def A242087(n): if n == 0: return 1 A = 0; T = [0] for i in (1..n): T.append(-1); T.append(1) for p in Permutations(T): P = 0; S = 0 for k in (0..2*n): P += p[k]; S += P if S == 0: A += 1 return A [A242087(n) for n in (0..10)]
Formula
a(n) = A241810(2*n+1).
Extensions
More terms from Hans Havermann, May 10 2014
a(17) from Hans Havermann, May 23 2014
Comments