This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242102 #18 Sep 06 2014 12:20:10 %S A242102 1713,2319,2923,4341,6159,7167,8983,103101,151149,157151,163157, %T A242102 167163,173167,191181,197193,233229,257251,277271,283281,311307, %U A242102 337331,367359,373367,421419,431421,439433,449443,463461,467463,479467,487479,509503,521509,547541,557547 %N A242102 Semiprimes that are the concatenation of a prime and the previous prime. %H A242102 K. D. Bajpai, <a href="/A242102/b242102.txt">Table of n, a(n) for n = 1..11480</a> %e A242102 13 and 17 are consecutive primes. Their reverse concatenation = 1713 = 3 * 571, which is semiprime. %e A242102 19 and 23 are consecutive primes. Their reverse concatenation = 2319 = 3 * 773, which is semiprime. %p A242102 select(k -> numtheory:-bigomega(k)=2, [seq(parse(cat(ithprime(n+1),ithprime(n))), n=1..200)]); %t A242102 A242102 = {}; Do[t = FromDigits[Flatten[IntegerDigits /@ {Prime[n], Prime[n - 1]}]]; If[PrimeOmega[t] == 2, AppendTo[A242102, t]], {n, 2, 200}]; A242102 %o A242102 (PARI) %o A242102 forprime(p=1,10^3,q=concat(Str(p),Str(precprime(p-1)));if(bigomega(eval(q))==2,print1(eval(q),", "))) \\ _Derek Orr_, Aug 15 2014 %Y A242102 Cf. A000040, A001358, A007796, A088784. %K A242102 nonn,base %O A242102 1,1 %A A242102 _K. D. Bajpai_, Aug 15 2014