This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242103 #15 Sep 06 2014 00:40:39 %S A242103 7,9,11,14,29,76,121,199,329,521,659,1364,3571,4523,7307,9349,24476, %T A242103 64079,167761,212533,439204,1149851,3010349,7881196,20633239,54018521, %U A242103 141422324,370248451,969323029,2537720636,6643838879,17393796001,45537549124,119218851371 %N A242103 Numbers m such that m^2 - 1 is the product of three distinct Fibonacci numbers > 1. %C A242103 Conjecture : except the numbers 9, 14, 121, 329, 659, 4523, 7307 and 212533, a(n) is a Lucas number (A000204). %e A242103 The non-Lucas number 9 is in the sequence because 9^2-1 = 80 = 2*5*8 is the product of three Fibonacci numbers. %e A242103 The Lucas number 11 is in the sequence because 11^2-1 = 120 = 3*5*8 is the product of three Fibonacci numbers. %p A242103 with(combinat,fibonacci):with(numtheory):nn:=150:lst:={}:T:=array(1..nn): %p A242103 for n from 1 to nn do: %p A242103 T[n]:=fibonacci(n): %p A242103 od: %p A242103 for p from 1 to nn-1 do: %p A242103 for q from p+1 to nn-1 do: %p A242103 for r from q+1 to nn-1 do: %p A242103 f:=T[p]*T[q]*T[r]+1:x:=sqrt(f): %p A242103 if x=floor(x)and T[p]<>1 %p A242103 then %p A242103 lst:=lst union {x}: %p A242103 else %p A242103 fi: %p A242103 od: %p A242103 od: %p A242103 od: %p A242103 print(lst): %o A242103 (PARI) %o A242103 v=[];for(i=3,100,for(j=i+1,100,for(k=j+1,100,s=fibonacci(i)*fibonacci(j)*fibonacci(k);if(issquare(s+1),v=concat(sqrtint(s+1),v)))));v=vecsort(v);v \\ _Derek Orr_, Aug 27 2014 %Y A242103 Cf. A245688, A242074, A000204. %K A242103 nonn %O A242103 1,1 %A A242103 _Michel Lagneau_, Aug 15 2014