cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242113 a(n) = number of primes of the form k^n - m^k where k > m > 0.

Original entry on oeis.org

0, 1, 2, 6, 7, 2, 14, 7, 11, 10, 33, 10, 42, 35, 47, 39, 122, 22, 248, 113, 247, 236, 751, 75, 1268, 812, 1422, 1531, 4543, 87, 8669, 5750, 8884, 10983, 29084, 2274, 58841, 41242, 58030, 74646, 216647, 11656, 419147, 313237, 364925, 617742, 1576642, 75542, 3071839, 2299620
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 15 2014

Keywords

Comments

It would be good to have a proof that a(n) is always finite. - N. J. A. Sloane, Sep 06 2014

Examples

			a(2) = 1 because  2^2 - 1^2 = 3 is prime;
a(3) = 2 because  2^3 - 1^2 = 7 is prime and 3^3 - 2^3 = 19 is prime, but 2^3 - 2^3 < 0, 5^3 - 2^5 = 93 is not prime, 5^3 - 2^7 = 215 is not prime, 9^3 - 2^9 = 217 is not prime, 11^3 - 2^11 < 0.
More generally, primes of the form k^r - m^k where  k > m > 0:
r = 2: 3;
r = 3: 7, 19;
r = 4: 7, 17, 73, 593, 2273, 20369;
r = 5: 7, 23, 31, 179, 58537, 1951811, 1986949;
r = 6: 4818617, 24006497;
r = 7: 7, 47, 79, 103, 127, 1137, 2179, 77101, 162287, 543607, 1706527, 9940951, 6069961193, 25365130463;
r = 8: 31, 6553, 141793, 49046209, 815722529, 16983038753, 499709542049;
r = 9: 71, 151, 223, 431, 463, 487, 503, 4521799, 133227103, 10604491181, 1175888158183;
r = 10: 4177, 37097, 58049, 58537, 1803001, 2486784401, 3486783889, 41426502825041, 819626139497153, 52458394747474721.
		

Crossrefs

Programs

  • Mathematica
    f[r_] := Length@ Rest@ Union@ Flatten@ Table[ If[ PrimeQ[k^r - m^k], k^r - m^k, 0], {k, 2, 10000000}, {m, Floor[k^(r/k)]}]; Do[ Print[ f[r]], {r, 2, 50}] (* Robert G. Wilson v, Aug 25 2014 *)

Formula

a(n) >= A245459(n).

Extensions

a(10)-a(50) from Robert G. Wilson v, Aug 25 2014