This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242114 #7 Sep 20 2021 07:10:20 %S A242114 1,3,1,7,1,1,11,3,1,1,19,3,1,1,1,23,7,3,1,1,1,35,7,3,1,1,1,1,43,11,3, %T A242114 3,1,1,1,1,55,11,7,3,1,1,1,1,1,63,19,7,3,3,1,1,1,1,1,83,19,7,3,3,1,1, %U A242114 1,1,1,1,91,23,11,7,3,3,1,1,1,1,1,1,115,23 %N A242114 Triangle read by rows: T(n,k) = number of pairs (x,y) in {1..n}X{1..n} with gcd(x,y) = k. %C A242114 T(n,1) = A018805(n); %C A242114 sum(T(n,k): k = 1..n) = A000290(n); %C A242114 sum(T(n,k): k = 2..n) = A100613(n); %C A242114 T(floor(n/k),1) = A018805(n). %H A242114 Reinhard Zumkeller, <a href="/A242114/b242114.txt">Rows n = 1..125 of table, flattened</a> %F A242114 T(n,k) = A018805(A010766(n,k)); %e A242114 T(4,1) = #{(1,1), (1,2), (1,3), (1,4), (2,1), (2,3), (3,1), (3,2), (3,4), (4,1), (4,3)} = 11; %e A242114 T(4,2) = #{(2,2), (2,4), (4,2)} = 3; %e A242114 T(4,3) = #{(3,3)} = 1; %e A242114 T(4,4) = #{(4,4)} = 1. %e A242114 The triangle begins: row sums %e A242114 . 1: 1 1 %e A242114 . 2: 3 1 4 %e A242114 . 3: 7 1 1 9 %e A242114 . 4: 11 3 1 1 16 %e A242114 . 5: 19 3 1 1 1 25 %e A242114 . 6: 23 7 3 1 1 1 36 %e A242114 . 7: 35 7 3 1 1 1 1 49 %e A242114 . 8: 43 11 3 3 1 1 1 1 64 %e A242114 . 9: 55 11 7 3 1 1 1 1 1 81 %e A242114 . 10: 63 19 7 3 3 1 1 1 1 1 100 %e A242114 . 11: 83 19 7 3 3 1 1 1 1 1 1 121 %e A242114 . 12: 91 23 11 7 3 3 1 1 1 1 1 1 144 %e A242114 . 13: 115 23 11 7 3 3 1 1 1 1 1 1 1 169 %e A242114 . 14: 127 35 11 7 3 3 3 1 1 1 1 1 1 1 196 %e A242114 . 15: 143 35 19 7 7 3 3 1 1 1 1 1 1 1 1 225 %e A242114 . 16: 159 43 19 11 7 3 3 3 1 1 1 1 1 1 1 1 256 %e A242114 . 17: 191 43 19 11 7 3 3 3 1 1 1 1 1 1 1 1 1 289 %e A242114 . 18: 203 55 23 11 7 7 3 3 3 1 1 1 1 1 1 1 1 1 324 . %t A242114 T[n_, k_] := 2 Total[EulerPhi[Range[Quotient[n, k]]]] - 1; %t A242114 Table[T[n, k], {n, 1, 18}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 20 2021 *) %o A242114 (Haskell) %o A242114 a242114 n k = a242114_tabl !! (n-1) !! (k-1) %o A242114 a242114_row n = a242114_tabl !! (n-1) %o A242114 a242114_tabl = map (map a018805) a010766_tabl %K A242114 nonn,tabl %O A242114 1,2 %A A242114 _Reinhard Zumkeller_, May 04 2014