A242118 Number of unit squares that intersect the circumference of a circle of radius n centered at (0,0).
0, 4, 12, 20, 28, 28, 44, 52, 60, 68, 68, 84, 92, 92, 108, 108, 124, 124, 140, 148, 148, 164, 172, 180, 188, 180, 196, 212, 220, 220, 228, 244, 252, 260, 260, 268, 284, 284, 300, 300, 308, 316, 332, 340, 348, 348, 364, 372, 380, 388, 380
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
Programs
-
Python
a = lambda n: sum(4 for x in range(n) for y in range(n) if x**2 + y**2 < n**2 and (x+1)**2 + (y+1)**2 > n**2)
-
Python
from sympy import factorint def a(n): r = 1 for p, e in factorint(n).items(): if p%4 == 1: r *= 2*e + 1 return 8*n - 4*r if n > 0 else 0
Formula
a(n) = 4*Sum{k=1..n} ceiling(sqrt(n^2 - (k-1)^2)) - floor(sqrt(n^2 - k^2)). - Orson R. L. Peters, Jan 30 2017
a(n) = 8*n - A046109(n) for n > 0. - conjectured by Orson R. L. Peters, Jan 30 2017, proved by Andrey Zabolotskiy, Jan 31 2017
Extensions
Terms corrected by Orson R. L. Peters, Jan 30 2017
Comments