This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242144 #6 Jul 23 2025 11:15:29 %S A242144 42,435,74,2338,1113,132,8688,7862,2902,236,25494,36224,27024,7596, %T A242144 421,63490,126894,154647,93308,19834,747,140148,367358,647404,663395, %U A242144 321320,51440,1314,282051,924300,2180310,3319500,2837837,1098260,131950,2318 %N A242144 T(n,k)=Number of length n+5 0..k arrays with no consecutive six elements summing to more than 3*k. %C A242144 Table starts %C A242144 ...42....435....2338.....8688.....25494......63490......140148......282051 %C A242144 ...74...1113....7862....36224....126894.....367358......924300.....2088459 %C A242144 ..132...2902...27024...154647....647404....2180310.....6256170....15876783 %C A242144 ..236...7596...93308...663395...3319500...13006484....42564898...121330981 %C A242144 ..421..19834..321320..2837837..16970962...77357343...288712815...924335053 %C A242144 ..747..51440.1098260.12043599..86052208..456215409..1941492045..6980495147 %C A242144 .1314.131950.3708268.50455611.430518585.2653766000.12874102578.51971761446 %H A242144 R. H. Hardin, <a href="/A242144/b242144.txt">Table of n, a(n) for n = 1..532</a> %F A242144 Empirical for column k: %F A242144 k=1: [linear recurrence of order 20] %F A242144 Empirical for row n: %F A242144 n=1: [polynomial of degree 6] %F A242144 n=2: [polynomial of degree 7] %F A242144 n=3: [polynomial of degree 8] %F A242144 n=4: [polynomial of degree 9] %F A242144 n=5: [polynomial of degree 10] %F A242144 n=6: [polynomial of degree 11] %F A242144 n=7: [polynomial of degree 12] %e A242144 Some solutions for n=3 k=4 %e A242144 ..2....1....0....0....0....2....0....0....0....0....2....0....1....0....1....2 %e A242144 ..1....0....0....3....3....3....3....0....3....2....2....4....3....3....0....1 %e A242144 ..1....1....4....2....1....0....0....4....1....0....1....3....1....2....1....0 %e A242144 ..4....3....0....2....1....1....3....2....0....2....1....0....0....0....0....1 %e A242144 ..1....0....3....2....3....1....1....0....4....0....1....0....1....1....1....1 %e A242144 ..1....0....1....0....0....2....4....1....1....0....4....2....4....3....2....4 %e A242144 ..1....1....0....2....0....4....0....1....1....2....3....1....2....0....1....0 %e A242144 ..1....2....3....3....2....1....1....3....3....1....1....2....0....1....2....3 %Y A242144 Column 1 is A133551(n+5) %Y A242144 Column 2 is A212227 %Y A242144 Column 3 is A212466 %K A242144 nonn,tabl %O A242144 1,1 %A A242144 _R. H. Hardin_, May 05 2014