cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242145 Number of length 1+5 0..n arrays with no consecutive six elements summing to more than 3*n.

Original entry on oeis.org

42, 435, 2338, 8688, 25494, 63490, 140148, 282051, 527626, 930237, 1561638, 2515786, 3913014, 5904564, 8677480, 12459861, 17526474, 24204727, 32881002, 44007348, 58108534, 75789462, 97742940, 124757815, 157727466, 197658657
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Examples

			Some solutions for n=4:
  2  4  2  3  0  2  1  1  0  2  4  0  0  0  1  3
  2  0  1  0  0  4  2  2  0  1  1  3  0  1  2  0
  1  2  1  1  4  2  1  3  1  1  1  0  0  0  3  0
  3  3  4  2  4  1  3  0  1  4  0  0  0  1  3  2
  1  2  3  3  1  1  2  4  0  2  1  2  0  2  1  1
  1  0  0  1  3  2  2  2  4  1  1  3  0  4  2  2
		

Crossrefs

Row 1 of A242144.

Formula

Empirical: a(n) = (1/2)*n^6 + (131/40)*n^5 + (71/8)*n^4 + (103/8)*n^3 + (85/8)*n^2 + (97/20)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(42 + 141*x + 175*x^2 - 13*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)