A242146 Number of length 2+5 0..n arrays with no consecutive six elements summing to more than 3*n.
74, 1113, 7862, 36224, 126894, 367358, 924300, 2088459, 4333978, 8394287, 15356562, 26776802, 44817566, 72410412, 113445080, 172987461, 257528394, 375265333, 536418926, 753586548, 1042134830, 1420633226, 1911330660
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2....1....4....0....2....3....1....0....3....0....1....4....0....1....0....3 ..1....1....2....2....4....0....1....2....0....3....3....3....3....1....0....4 ..0....3....3....1....0....2....0....3....4....4....3....2....1....3....4....0 ..0....2....3....1....4....3....2....0....0....1....0....1....2....1....1....2 ..0....1....0....3....1....0....4....1....3....1....0....2....0....0....0....3 ..1....2....0....2....0....3....1....2....0....0....0....0....0....0....1....0 ..1....0....3....2....2....1....0....2....4....0....4....1....2....2....4....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A242144.
Formula
Empirical: a(n) = (1021/2520)*n^7 + (28/9)*n^6 + (3679/360)*n^5 + (1349/72)*n^4 + (1873/90)*n^3 + (1019/72)*n^2 + (779/140)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(74 + 521*x + 1030*x^2 + 348*x^3 + 90*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)