cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242149 Number of length 5+5 0..n arrays with no consecutive six elements summing to more than 3*n.

This page as a plain text file.
%I A242149 #6 Jul 23 2025 11:15:42
%S A242149 421,19834,321320,2837837,16970962,77357343,288712815,924335053,
%T A242149 2621131557,6736000381,15956886023,35297721979,73650614324,
%U A242149 146121877010,277441759058,506811766161,894639234101,1531707118508,2551438684546
%N A242149 Number of length 5+5 0..n arrays with no consecutive six elements summing to more than 3*n.
%C A242149 Row 5 of A242144
%H A242149 R. H. Hardin, <a href="/A242149/b242149.txt">Table of n, a(n) for n = 1..137</a>
%F A242149 Empirical: a(n) = (859693/3628800)*n^10 + (1892767/725760)*n^9 + (1563833/120960)*n^8 + (4608661/120960)*n^7 + (12804769/172800)*n^6 + (3445219/34560)*n^5 + (1069993/11340)*n^4 + (11327921/181440)*n^3 + (234169/8400)*n^2 + (2416/315)*n + 1
%e A242149 Some solutions for n=2
%e A242149 ..2....1....1....1....1....1....2....0....0....0....0....1....1....1....2....2
%e A242149 ..0....0....0....0....1....2....2....1....0....0....1....1....0....1....2....0
%e A242149 ..0....2....1....1....1....0....2....0....0....0....1....0....2....0....0....2
%e A242149 ..1....0....1....1....0....1....0....0....2....1....1....0....0....1....1....1
%e A242149 ..1....0....0....0....2....1....0....0....1....1....0....1....0....0....1....1
%e A242149 ..1....1....1....0....1....0....0....1....1....0....0....0....0....1....0....0
%e A242149 ..0....0....1....0....1....1....0....1....0....0....1....2....2....1....0....2
%e A242149 ..0....0....0....1....1....0....1....0....1....0....0....1....0....2....0....0
%e A242149 ..2....2....1....2....0....2....0....0....1....0....2....2....0....1....0....1
%e A242149 ..0....1....1....1....0....1....2....2....0....1....0....0....1....1....0....0
%K A242149 nonn
%O A242149 1,1
%A A242149 _R. H. Hardin_, May 05 2014