This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242151 #6 Jul 23 2025 11:15:56 %S A242151 1314,131950,3708268,50455611,430518585,2653766000,12874102578, %T A242151 51971761446,181406955240,562733770845,1583267148775,4103373431703, %U A242151 9915409939254,22554409881732,48670945639576,100272843914859 %N A242151 Number of length 7+5 0..n arrays with no consecutive six elements summing to more than 3*n. %C A242151 Row 7 of A242144 %H A242151 R. H. Hardin, <a href="/A242151/b242151.txt">Table of n, a(n) for n = 1..36</a> %F A242151 Empirical: a(n) = (5100631/31933440)*n^12 + (169163671/79833600)*n^11 + (187220249/14515200)*n^10 + (69250481/1451520)*n^9 + (23150501/193536)*n^8 + (74153023/345600)*n^7 + (4107686627/14515200)*n^6 + (80527567/290304)*n^5 + (146168441/725760)*n^4 + (192747089/1814400)*n^3 + (1199071/30800)*n^2 + (35587/3960)*n + 1 %e A242151 Some solutions for n=1 %e A242151 ..0....0....0....0....1....0....0....1....1....0....0....1....1....1....1....0 %e A242151 ..0....0....0....0....0....1....0....1....0....0....1....0....1....0....1....0 %e A242151 ..0....1....0....0....1....1....1....0....1....1....1....1....1....1....0....1 %e A242151 ..1....0....0....0....0....1....1....0....0....0....0....1....0....0....0....1 %e A242151 ..1....0....0....1....1....0....0....0....0....0....0....0....0....0....0....0 %e A242151 ..1....0....1....1....0....0....1....0....0....0....0....0....0....0....0....0 %e A242151 ..0....1....1....0....0....0....0....0....0....1....1....0....0....0....1....1 %e A242151 ..0....0....0....0....0....0....0....1....0....1....1....1....0....1....1....0 %e A242151 ..0....1....0....0....0....0....1....0....1....0....0....1....1....0....1....0 %e A242151 ..1....0....0....1....1....1....1....0....1....0....0....0....1....1....0....0 %e A242151 ..1....1....0....0....1....0....0....0....1....0....1....1....1....1....0....1 %e A242151 ..0....0....0....1....1....1....0....0....0....1....0....0....0....0....0....1 %K A242151 nonn %O A242151 1,1 %A A242151 _R. H. Hardin_, May 05 2014