cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242169 Least prime divisor of Fr(n) which does not divide any Fr(k) with k < n, or 1 if such a primitive prime divisor of Fr(n) does not exist, where Fr(n) denotes the n-th Franel number given by A000172.

Original entry on oeis.org

2, 5, 7, 173, 563, 13, 41, 369581, 937, 61, 23, 29, 2141, 12148537, 31, 157, 59, 37, 506251, 151, 3019, 769, 47, 6730949, 79, 53, 3853, 661, 138961158000728258971, 1361, 421, 96920594213, 51378681049, 457, 71
Offset: 1

Views

Author

Zhi-Wei Sun, May 05 2014

Keywords

Comments

Conjecture: a(n) > 1 for all n > 0.

Examples

			a(7) = 41 since Fr(7) = 2^9*5*41 with the prime factor 41 dividing none of Fr(1), ..., Fr(6) but 2 divides Fr(1) = 2 and 5 divides Fr(2) = 10.
		

Crossrefs

Programs

  • Mathematica
    Fr[n_]:=Sum[Binomial[n,k]^3,{k,0,n}]
    f[n_]:=FactorInteger[Fr[n]]
    p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}]
    Do[Do[Do[If[Mod[Fr[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}];Print[n," ",1];Label[bb];Continue,{n,1,35}]