A242170 Least prime divisor of T(n) which does not divide any T(k) with k < n, or 1 if such a primitive prime divisor of T(n) does not exist, where T(n) is the n-th central trinomial coefficient given by A002426.
1, 3, 7, 19, 17, 47, 131, 41, 43, 1279, 503, 113, 2917, 569, 198623, 14083, 26693, 201611, 42998951, 41931041, 52635749, 1296973, 169097, 1451, 1304394227, 107, 233, 173, 2062225210273, 719, 191, 31551555041, 6301, 563, 3769, 967, 9539, 5073466546857451, 4542977, 9739
Offset: 1
Keywords
Examples
a(11) = 503 since T(11) = 3*17*503 with the prime divisor 503 dividing none of T(1),...,T(10), but 3 divides T(2) = 3 and 17 divides T(5) = 51.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..168
Programs
-
Mathematica
T[n_]:=Sum[Binomial[n,2k]*Binomial[2k,k],{k,0,n/2}] f[n_]:=FactorInteger[T[n]] p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}] Do[If[T[n]<2,Goto[cc]];Do[Do[If[Mod[T[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}]; Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}]; Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,40}]
Comments