A242171 Least prime divisor of B(n) which does not divide any B(k) with k < n, or 1 if such a primitive prime divisor of B(n) does not exist, where B(n) is the n-th Bell number given by A000110.
1, 2, 5, 3, 13, 7, 877, 23, 19, 4639, 22619, 37, 27644437, 1800937, 251, 241, 255755771, 19463, 271, 61, 24709, 17, 89, 123419, 367, 101, 157, 67, 75979, 107, 11, 179167, 5694673, 111509, 980424262253, 193, 44101, 5399, 6353, 3221
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..104 (terms 1..81 from Zhi-Wei Sun)
Programs
-
Maple
a(4) = 3 since B(4) = 3*5 with 3 dividing none of B(1) = 1, B(2) = 2 and B(3) = 5.
-
Mathematica
b[n_]:=BellB[n] f[n_]:=FactorInteger[b[n]] p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}] Do[If[b[n]<2,Goto[cc]];Do[Do[If[Mod[b[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,40}]
-
Python
# Python 3.2 or higher required. from itertools import accumulate from sympy import primefactors A242171_list, bell, blist, b = [1], [1,1], [1], 1 for _ in range(20): blist = list(accumulate([b]+blist)) b = blist[-1] fs = primefactors(b) for p in fs: if all([n % p for n in bell]): A242171_list.append(p) break else: A242171_list.append(1) bell.append(b) # Chai Wah Wu, Sep 19 2014
Comments