A242173 Least prime divisor of the n-th central Delannoy number D(n) which does not divide any D(k) with k < n, or 1 if such a primitive prime divisor of D(n) does not exist.
3, 13, 7, 107, 11, 89, 31, 265729, 19, 9887, 23, 113, 79, 373, 53, 3089, 151, 127, 719, 193, 43, 482673878761, 47, 61403, 109, 37889, 1223, 3251609, 59, 181, 22504880485262968151, 3598831, 67, 69593, 179, 13828116559, 4247285503, 1579, 19095283759, 619
Offset: 1
Keywords
Examples
a(3) = 7 since D(3) = 3^2*7 with 7 dividing none of D(1) = 3 and D(2) = 13.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..119
Programs
-
Mathematica
d[n_]:=Sum[Binomial[n+k,k]*Binomial[n,k],{k,0,n}] f[n_]:=FactorInteger[d[n]] p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}] Do[If[d[n]<2,Goto[cc]];Do[Do[If[Mod[d[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,40}]
Comments