cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242173 Least prime divisor of the n-th central Delannoy number D(n) which does not divide any D(k) with k < n, or 1 if such a primitive prime divisor of D(n) does not exist.

Original entry on oeis.org

3, 13, 7, 107, 11, 89, 31, 265729, 19, 9887, 23, 113, 79, 373, 53, 3089, 151, 127, 719, 193, 43, 482673878761, 47, 61403, 109, 37889, 1223, 3251609, 59, 181, 22504880485262968151, 3598831, 67, 69593, 179, 13828116559, 4247285503, 1579, 19095283759, 619
Offset: 1

Views

Author

Zhi-Wei Sun, May 06 2014

Keywords

Comments

Conjecture:
(i) a(n) > 1 for all n > 0.
(ii) For any integer n > 0, the n-th Apéry number A(n) = Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2 has a prime divisor which does not divide any A(k) with k < n.

Examples

			a(3) = 7 since D(3) = 3^2*7 with 7 dividing none of D(1) = 3 and D(2) = 13.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=Sum[Binomial[n+k,k]*Binomial[n,k],{k,0,n}]
    f[n_]:=FactorInteger[d[n]]
    p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}]
    Do[If[d[n]<2,Goto[cc]];Do[Do[If[Mod[d[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,40}]