A242180 Least prime divisor of q(n) which does not divide any q(k) with k < n, or 1 if such a primitive prime divisor does not exist, where q(.) is the strict partition function given by A000009.
1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 11, 1, 1, 19, 23, 1, 1, 1, 89, 13, 61, 71, 1, 1, 37, 1, 1, 17, 1, 7, 1, 1, 167, 1, 1, 491, 53, 1, 31, 1, 227, 1, 1, 1, 97, 1, 59, 241, 29, 1, 953, 1063, 1777, 1, 367, 1, 1
Offset: 1
Keywords
Examples
a(8) = 1 since q(8) = 2*3 with 2 = q(3) and 3 = q(5). a(23) = 13 since q(23) = 2^3*13 with 13 not dividing q(1)*q(2)*...*q(22), but 2 divides q(3) = 2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..6000
Programs
-
Mathematica
f[n_]:=FactorInteger[PartitionsQ[n]] pp[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}] Do[If[PartitionsQ[n]<2,Goto[cc]];Do[Do[If[Mod[PartitionsQ[i],Part[pp[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[pp[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[pp[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,60}]
Comments