cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242193 Least prime p such that B_{2*n} == 0 (mod p) but there is no k < n with B_{2k} == 0 (mod p), or 1 if such a prime p does not exist, where B_m denotes the m-th Bernoulli number.

Original entry on oeis.org

1, 1, 1, 1, 5, 691, 7, 3617, 43867, 283, 11, 103, 13, 9349, 1721, 37, 17, 26315271553053477373, 19, 137616929, 1520097643918070802691, 59, 23, 653, 417202699, 577, 39409, 113161, 29, 2003, 31, 1226592271, 839, 101, 688531
Offset: 1

Views

Author

Zhi-Wei Sun, May 07 2014

Keywords

Comments

Conjecture: a(n) is prime for any n > 4.
It is known that (-1)^(n-1)*B_{2*n} > 0 for all n > 0.
See also A242194 for a similar conjecture involving Euler numbers.

Examples

			a(14) = 9349 since the numerator of |B_{28}| is 7*9349*362903 with B_2*B_4*B_6*...*B_{26} not congruent to 0 modulo 9349, but B_{14} == 0 (mod 7).
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=Numerator[Abs[BernoulliB[2n]]]
    f[n_]:=FactorInteger[b[n]]
    p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}]
    Do[If[b[n]<2,Goto[cc]];Do[Do[If[Mod[b[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,35}]
    (* Second program: *)
    LPDtransform[n_, fun_] := Module[{d}, d[p_] := AllTrue[Range[n - 1], !Divisible[fun[#], p]&]; SelectFirst[FactorInteger[fun[n]][[All, 1]], d] /. Missing[_] -> 1];
    A242193list[sup_] := Table[LPDtransform[n, Function[k, Abs[BernoulliB[2k]] // Numerator]], {n, 1, sup}]
    A242193list[35] (* Jean-François Alcover, Jul 27 2019, after Peter Luschny *)
  • Sage
    def LPDtransform(n, fun):
        d = lambda p: all(not p.divides(fun(k)) for k in (1..n-1))
        return next((p for p in prime_divisors(fun(n)) if d(p)), 1)
    A242193list = lambda sup: [LPDtransform(n, lambda k: abs(bernoulli(2*k)).numerator()) for n in (1..sup)]
    print(A242193list(35)) # Peter Luschny, Jul 26 2019