A242195 Least prime divisor of the n-th tangent number T_n which does not divide any T_k with k < n, or 1 if such a primitive prime divisor of T_n does not exist.
1, 2, 1, 17, 31, 691, 43, 257, 73, 41, 89, 103, 2731, 113, 151, 37, 43691, 109, 174763, 61681, 337, 59, 178481, 97, 251, 157, 39409, 113161, 67, 1321, 266689, 641, 839, 101, 281, 433, 223, 229, 121369, 631
Offset: 1
Keywords
Examples
a(4) = 17 since T_4 = 2^4*17 with 17 dividing none of T_1 = 1, T_2 = 2 and T_3 = 2^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..54
Programs
-
Mathematica
t[n_]:=(-1)^(n-1)*2^(2n)(2^(2n)-1)BernoulliB[2n]/(2n) f[n_]:=FactorInteger[t[n]] p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}] Do[If[t[n]<2,Goto[cc]];Do[Do[If[Mod[t[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,40}]
-
Sage
# uses[LPDtransform from A242193] def Tnum(n): return (-1)^(n-1)*2^(2*n)*(2^(2*n)-1)*bernoulli(2*n)/(2*n) A242195list = lambda sup: [LPDtransform(n, Tnum) for n in (1..sup)] print(A242195list(40)) # Peter Luschny, Jul 26 2019
Comments