A242213 Least prime p < prime(n) such that the Bernoulli number B_{p-1} is a primitive root modulo prime(n), or 0 if such a prime p does not exist.
0, 0, 2, 2, 3, 2, 3, 17, 2, 2, 7, 2, 3, 19, 2, 2, 3, 2, 17, 2, 7, 2, 3, 3, 13, 2, 2, 3, 3, 3, 3, 3, 3, 5, 2, 3, 3, 7, 2, 2, 3, 2, 2, 5, 2, 2, 5, 3, 3, 3, 3, 2, 7, 3, 3, 2, 2, 2, 3, 5, 11, 2, 13, 2, 11, 2, 5, 17, 3, 2
Offset: 1
Keywords
Examples
a(7) = 3 since 3 is a primitive root modulo prime(7) = 17 but 2 is not.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Notes on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2] f[k_]:=BernoulliB[Prime[k]-1] dv[n_]:=Divisors[n] Do[Do[If[rMod[f[k],Prime[n]]==0,Goto[aa]];Do[If[rMod[f[k]^(Part[dv[Prime[n]-1],i])-1,Prime[n]]==0,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];Print[n," ",Prime[k]];Goto[bb];Label[aa];Continue,{k,1,n-1}];Print[n," ",0];Label[bb];Continue,{n,1,70}]
Comments