This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242217 #9 Feb 16 2025 08:33:22 %S A242217 1,1,1,2,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,2,2,3,3,2,2,1,1,1,1,2,2,2,2,2, %T A242217 1,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,2,2,3,3,2,3, %U A242217 2,2,3,2,3,3,3,3,3,3,3,3,3,3,2,3,2,2,3 %N A242217 Number of partitions of n into distinct Heegner numbers, cf. A003173. %C A242217 Heegner numbers = A003173(1..9) = {1,2,3,7,11,19,43,67,163}; %C A242217 0 <= a(n) <= 3; %C A242217 for n > 316: a(n) = 0; 154 = smallest number m such that a(m) = 0; %C A242217 number of terms greater than 0 = 303; %C A242217 sum of all terms = 512. %H A242217 Reinhard Zumkeller, <a href="/A242217/b242217.txt">Table of n, a(n) for n = 0..400</a> %H A242217 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeegnerNumber.html">Heegner Number</a> %H A242217 Wikipedia, <a href="http://en.wikipedia.org/wiki/Heegner_number">Heegner number</a> %e A242217 a(10) = #{7+3, 7+2+1} = 2; %e A242217 a(11) = #{11, 7+3+1} = 2; %e A242217 a(12) = #{11+1, 7+3+2} = 2; %e A242217 a(13) = #{11+2, 7+3+2+1} = 2; %e A242217 a(14) = #{11+3, 11+2+1} = 2; %e A242217 a(15) = #{11+3+1} = 1; %e A242217 a(16) = #{11+3+2} = 1; %e A242217 a(17) = #{11+3+2+1} = 1; %e A242217 a(18) = #{11+7} = 1; %e A242217 a(19) = #{19, 11+7+1} = 2; %e A242217 a(20) = #{19+1, 11+7+2} = 2; %e A242217 a(316) = #{163+67+43+19+11+7+3+2+1} = 1. %t A242217 heegnerNums = {1,2,3,7,11,19,43,67,163}; %t A242217 a[n_] := a[n] = Count[IntegerPartitions[n, All, heegnerNums], P_List /; Sort[P] == Union[P]]; %t A242217 Table[Print[n," ", a[n]]; a[n], {n,0,316}] (* _Jean-François Alcover_, Jun 10 2019 *) %o A242217 (Haskell) %o A242217 a242217 = p [1,2,3,7,11,19,43,67,163] where %o A242217 p _ 0 = 1 %o A242217 p [] _ = 0 %o A242217 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m %Y A242217 Cf. A242216. %K A242217 nonn %O A242217 0,4 %A A242217 _Reinhard Zumkeller_, May 07 2014