This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242230 #16 Mar 28 2016 09:11:53 %S A242230 61,4561,9511,17299,19471,26737,30109,37447,49957,69439,94561,196699, %T A242230 209311,259603,317539,333517,352249,414097,427069,459013,678157, %U A242230 845491,886429,943819,1027189,1217719,1410163,1472587,1647379,2165323,2200777,2230549,2603389 %N A242230 Primes p of the form p^2 + q + 1 where p < q are consecutive primes. %H A242230 K. D. Bajpai, <a href="/A242230/b242230.txt">Table of n, a(n) for n = 1..7040</a> %e A242230 a(1) = 61 = 7^2 + 11 + 1: 61 is prime, 7 and 11 are consecutive primes. %e A242230 a(2) = 4561 = 67^2 + 71 + 1: 4561 is prime, 67 and 71 are consecutive primes. %p A242230 with(numtheory): A242230:= proc()local k ; k:=(ithprime(x)^2+ithprime(x+1)+1); if isprime(k) then RETURN (k); fi;end: seq(A242230 (),x=1..500); %t A242230 A242230 = {}; Do[p = Prime[n]^2 + Prime[n + 1] + 1; If[PrimeQ[p], AppendTo[A242230, p]], {n, 500}]; A242230 %t A242230 Select[#[[1]]^2+#[[2]]+1&/@Partition[Prime[Range[300]],2,1],PrimeQ] (* _Harvey P. Dale_, Mar 28 2016 *) %Y A242230 Cf. A242231, A000040, A241945, A045636, A214723, A214511. %K A242230 nonn %O A242230 1,1 %A A242230 _K. D. Bajpai_, May 08 2014