cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242231 Primes p of the form p^2 + q - 1 where p < q are consecutive primes.

This page as a plain text file.
%I A242231 #16 Mar 05 2022 15:55:07
%S A242231 13,31,59,307,383,557,997,1409,1723,3541,5113,5407,6323,6977,8017,
%T A242231 10303,19469,52673,94559,109897,151717,158009,187927,193163,249503,
%U A242231 274069,326617,361807,383791,419261,427067,546863,573809,592133,636017,684757,735307,738743
%N A242231 Primes p of the form p^2 + q - 1 where p < q are consecutive primes.
%H A242231 K. D. Bajpai, <a href="/A242231/b242231.txt">Table of n, a(n) for n = 1..6900</a>
%e A242231 a(1) = 13 = 3^2 + 5 - 1: 13 is prime, 3 and 5 are consecutive primes.
%e A242231 a(2) = 31 = 5^2 + 7 - 1: 31 is prime, 5 and 7 are consecutive primes.
%p A242231 with(numtheory): A242231:= proc()local k ; k:=(ithprime(x)^2+ithprime(x+1)-1);if  isprime(k) then RETURN (k); fi;end: seq(A242231 (),x=1..500);
%t A242231 A242231 = {}; Do[p = Prime[n]^2 + Prime[n + 1] - 1; If[PrimeQ[p], AppendTo[A242231, p]], {n, 500}]; A242231
%t A242231 Select[#[[1]]^2+#[[2]]-1&/@Partition[Prime[Range[250]],2,1],PrimeQ] (* _Harvey P. Dale_, Mar 05 2022 *)
%Y A242231 Cf. A242230, A000040, A241945, A045636, A214723, A214511.
%K A242231 nonn
%O A242231 1,1
%A A242231 _K. D. Bajpai_, May 08 2014