This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242233 #16 Nov 05 2024 19:30:52 %S A242233 1,1,3,11,41,137,347,611,5777,98321,677363,-4192197,-134908871, %T A242233 -617972327,22749265099,449951818387,-632325203423,-163681108703199, %U A242233 -2324079456844573,33233931805782635,1734259111955765577,14135975420529458857,-777499293367428199109 %N A242233 2^n*(C_n)^(1/2) in the Cauchy type product where C_n is the n-th Catalan number. %F A242233 a(n) = 2^n*n!*[x^n](sqrt(exp(2*x)*(BesselI(0,2*x)-BesselI(1,2*x)))), where [x^n](f(x)) the coefficient of x^n in f(x). %F A242233 For n > 0, a(n) = Sum_{k=1..n} a(n-k)*binomial(n,k)*(2*k)!*(3*k/(2*n)-1)*2^k/(k!*(k+1)!). - _Tani Akinari_, Nov 05 2024 %p A242233 f := sqrt(exp(2*x)*(BesselI(0,2*x)-BesselI(1,2*x))); %p A242233 seq(2^n*n!*coeff(series(f,x,n+1),x,n),n=0..22); %p A242233 # Second program with function g from A241885: %p A242233 catalan := n -> binomial(2*n,n)/(n+1); %p A242233 a := n -> 2^n*g(catalan, n); seq(a(n), n=0..22); %t A242233 g[n_] := g[n] = (CatalanNumber[n] - Sum[Binomial[n, m] g[m] g[n - m], {m, 1, n - 1}])/2; %t A242233 a[0] = 1; a[n_] := 2^n g[n]; %t A242233 Table[a[n], {n, 0, 22}] (* _Jean-François Alcover_, Aug 02 2019, from 2nd Maple program *) %o A242233 (Maxima) a[n]:=if n=0 then 1 else sum(a[n-k]*binomial(n, k)*(2*k)!*(3*k/(2*n)-1)*2^k/(k!*(k+1)!), k, 1, n); makelist(a[n],n,0,50); /* _Tani Akinari_, Nov 05 2024 */ %Y A242233 Cf. A000108, A126156, A241885. %K A242233 sign %O A242233 0,3 %A A242233 _Peter Luschny_, May 08 2014