This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242237 #10 Nov 01 2018 06:29:05 %S A242237 28,70,148,298,592,1174,2332,4642,9256,18442,36736,73174,145756, %T A242237 290338,578344,1152046,2294836,4571230,9105724,18138274,36130792, %U A242237 71971246,143364148,285576250,568857664,1133144098,2257182472,4496226670 %N A242237 Number of length n+6+1 0..6 arrays with every value 0..6 appearing at least once in every consecutive 6+2 elements, and new values 0..6 introduced in order. %H A242237 R. H. Hardin, <a href="/A242237/b242237.txt">Table of n, a(n) for n = 1..117</a> %F A242237 Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7). %F A242237 Empirical g.f.: 2*x*(14 + 21*x + 25*x^2 + 26*x^3 + 24*x^4 + 19*x^5 + 11*x^6) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7). - _Colin Barker_, Nov 01 2018 %e A242237 Some solutions for n=5: %e A242237 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 %e A242237 ..1....1....1....1....1....1....1....1....1....1....1....1....1....0....1....1 %e A242237 ..2....2....2....2....2....2....2....2....2....2....2....2....2....1....2....2 %e A242237 ..3....3....0....3....3....3....0....3....3....3....3....3....3....2....3....3 %e A242237 ..4....4....3....4....4....0....3....4....4....4....4....4....1....3....4....4 %e A242237 ..0....1....4....5....0....4....4....5....0....5....5....5....4....4....5....5 %e A242237 ..5....5....5....1....5....5....5....6....5....6....0....3....5....5....6....1 %e A242237 ..6....6....6....6....6....6....6....0....6....0....6....6....6....6....1....6 %e A242237 ..1....0....1....0....1....1....1....3....2....5....1....0....0....1....0....0 %e A242237 ..3....2....0....3....2....2....0....1....1....1....2....1....5....0....2....2 %e A242237 ..2....3....2....2....3....3....2....2....3....2....3....2....2....2....3....3 %e A242237 ..3....4....4....3....0....1....5....6....5....3....5....3....3....1....4....6 %Y A242237 Column 6 of A242239. %K A242237 nonn %O A242237 1,1 %A A242237 _R. H. Hardin_, May 08 2014