This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242238 #10 Nov 01 2018 06:43:13 %S A242238 36,92,197,400,799,1590,3165,6308,12587,25138,50184,100171,199942, %T A242238 399085,796580,1589995,3173682,6334777,12644416,25238648,50377125, %U A242238 100554308,200709531,400622482,799654969,1596136256,3185937735,6359231054 %N A242238 Number of length n+7+1 0..7 arrays with every value 0..7 appearing at least once in every consecutive 7+2 elements, and new values 0..7 introduced in order. %H A242238 R. H. Hardin, <a href="/A242238/b242238.txt">Table of n, a(n) for n = 1..112</a> %F A242238 Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) + a(n-8). %F A242238 Empirical g.f.: x*(36 + 56*x + 69*x^2 + 75*x^3 + 74*x^4 + 66*x^5 + 51*x^6 + 29*x^7) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8). - _Colin Barker_, Nov 01 2018 %e A242238 Some solutions for n=5: %e A242238 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 %e A242238 ..1....1....1....1....1....1....1....0....1....1....1....0....1....0....1....1 %e A242238 ..2....2....2....2....2....2....2....1....1....2....2....1....2....1....2....2 %e A242238 ..3....3....3....3....3....3....3....2....2....3....3....2....3....2....0....3 %e A242238 ..4....4....4....1....4....1....4....3....3....4....0....3....0....3....3....4 %e A242238 ..5....5....5....4....5....4....5....4....4....0....4....4....4....4....4....5 %e A242238 ..0....6....0....5....6....5....6....5....5....5....5....5....5....5....5....6 %e A242238 ..6....0....6....6....2....6....7....6....6....6....6....6....6....6....6....0 %e A242238 ..7....7....7....7....7....7....0....7....7....7....7....7....7....7....7....7 %e A242238 ..1....2....2....0....0....0....1....0....0....1....3....0....2....2....6....3 %e A242238 ..2....1....1....2....1....3....1....1....2....2....1....2....1....0....1....1 %e A242238 ..3....3....3....3....6....2....2....2....1....3....2....1....3....1....2....2 %e A242238 ..4....2....5....3....3....2....3....2....2....5....5....6....1....6....0....4 %Y A242238 Column 7 of A242239. %K A242238 nonn %O A242238 1,1 %A A242238 _R. H. Hardin_, May 08 2014