This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242239 #6 Jul 23 2025 11:16:03 %S A242239 3,6,5,10,12,8,15,22,22,13,21,35,43,40,21,28,51,71,82,74,34,36,70,106, %T A242239 139,157,136,55,45,92,148,211,271,304,250,89,55,117,197,298,416,531, %U A242239 586,460,144,66,145,253,400,592,821,1047,1129,846,233,78,176,316,517,799 %N A242239 T(n,k)=Number of length n+k+1 0..k arrays with every value 0..k appearing at least once in every consecutive k+2 elements, and new values 0..k introduced in order. %C A242239 Table starts %C A242239 ...3....6...10...15....21....28....36....45....55....66....78....91...105 %C A242239 ...5...12...22...35....51....70....92...117...145...176...210...247...287 %C A242239 ...8...22...43...71...106...148...197...253...316...386...463...547...638 %C A242239 ..13...40...82..139...211...298...400...517...649...796...958..1135..1327 %C A242239 ..21...74..157..271...416...592...799..1037..1306..1606..1937..2299..2692 %C A242239 ..34..136..304..531...821..1174..1590..2069..2611..3216..3884..4615..5409 %C A242239 ..55..250..586.1047..1626..2332..3165..4125..5212..6426..7767..9235.10830 %C A242239 ..89..460.1129.2059..3231..4642..6308..8229.10405.12836.15522.18463.21659 %C A242239 .144..846.2176.4047..6411..9256.12587.16429.20782.25646.31021.36907.43304 %C A242239 .233.1556.4195.7955.12716.18442.25138.32821.41527.51256.62008.73783.86581 %H A242239 R. H. Hardin, <a href="/A242239/b242239.txt">Table of n, a(n) for n = 1..731</a> %F A242239 Empirical for column k: %F A242239 k=1: a(n) = a(n-1) +a(n-2) %F A242239 k=2: a(n) = a(n-1) +a(n-2) +a(n-3) %F A242239 k=3: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) %F A242239 k=4: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) %F A242239 k=5: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) %F A242239 k=6: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) %F A242239 k=7: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) %F A242239 k=8: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) %F A242239 k=9: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) %F A242239 Empirical for row n: %F A242239 n=1: a(n) = (1/2)*n^2 + (3/2)*n + 1 %F A242239 n=2: a(n) = (3/2)*n^2 + (5/2)*n + 1 %F A242239 n=3: a(n) = (7/2)*n^2 + (7/2)*n + 1 %F A242239 n=4: a(n) = (15/2)*n^2 + (9/2)*n + 1 %F A242239 n=5: a(n) = (31/2)*n^2 + (11/2)*n + 1 for n>1 %F A242239 n=6: a(n) = (63/2)*n^2 + (13/2)*n + 1 for n>2 %F A242239 n=7: a(n) = (127/2)*n^2 + (15/2)*n + 1 for n>3 %F A242239 n=8: a(n) = (255/2)*n^2 + (17/2)*n + 1 for n>4 %F A242239 n=9: a(n) = (511/2)*n^2 + (19/2)*n + 1 for n>5 %F A242239 n=10: a(n) = (1023/2)*n^2 + (21/2)*n + 1 for n>6 %F A242239 n=11: a(n) = (2047/2)*n^2 + (23/2)*n + 1 for n>7 %F A242239 n=12: a(n) = (4095/2)*n^2 + (25/2)*n + 1 for n>8 %F A242239 n=13: a(n) = (8191/2)*n^2 + (27/2)*n + 1 for n>9 %F A242239 n=14: a(n) = (16383/2)*n^2 + (29/2)*n + 1 for n>10 %F A242239 n=15: a(n) = (32767/2)*n^2 + (31/2)*n + 1 for n>11 %F A242239 Empirical large-k generalization, for k>n-4: T(n,k) = ((2^n-1)/2)*k^2 + ((2*n+1)/2)*k + 1 %F A242239 Empirical recurrence generalization, for column k: a(n) = sum {i in 1..k+1} a(n-i) %e A242239 Some solutions for n=5 k=4 %e A242239 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 %e A242239 ..1....1....1....1....1....1....1....1....1....1....1....1....1....0....1....1 %e A242239 ..2....2....0....2....2....1....0....0....2....0....2....2....0....1....2....0 %e A242239 ..1....3....2....3....3....2....2....2....3....2....3....3....2....2....3....2 %e A242239 ..3....4....3....4....4....3....3....3....0....3....0....0....3....3....4....3 %e A242239 ..4....0....4....1....0....4....4....4....4....4....4....4....4....4....1....4 %e A242239 ..0....2....2....0....1....0....2....0....2....1....2....1....0....2....0....1 %e A242239 ..2....1....1....0....2....1....1....1....1....0....1....2....1....0....2....0 %e A242239 ..2....3....0....2....3....0....0....1....0....0....3....4....2....1....3....4 %e A242239 ..1....0....0....3....0....2....2....2....3....2....2....3....3....1....0....2 %Y A242239 Column 1 is A000045(n+3) %Y A242239 Column 2 is A196700(n+3) %Y A242239 Row 1 is A000217(n+1) %Y A242239 Row 2 is A000326(n+1) %Y A242239 Row 3 is A069099(n+1) %Y A242239 Row 4 is A220083 %K A242239 nonn,tabl %O A242239 1,1 %A A242239 _R. H. Hardin_, May 08 2014