A242242 Least positive primitive root g < prime(n) modulo prime(n) with 2^g - 1 also a primitive root modulo prime(n), or 0 if such a number g does not exist.
1, 0, 2, 5, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2
Offset: 1
Keywords
Examples
a(4) = 5 since both 5 and 2^5 - 1 = 31 are primitive roots modulo prime(4) = 7, but none of 1, 2, 4 and 2^3 - 1 is a primitive root modulo prime(4) = 7.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Notes on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=f[n]=2^n-1 dv[n_]:=Divisors[n] Do[Do[If[Mod[f[k],Prime[n]]==0,Goto[aa]];Do[If[Mod[k^(Part[dv[Prime[n]-1],j])-1,Prime[n]]==0,Goto[aa]],{j,1,Length[dv[Prime[n]-1]]-1}];Do[If[rMod[f[k]^(Part[dv[Prime[n]-1],i])-1,Prime[n]]==0,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}]; Print[n," ",k];Goto[bb];Label[aa];Continue,{k,1,Prime[n]-1}];Label[cc];Print[n," ",0];Label[bb];Continue,{n,1,70}]
Comments