This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242268 #31 Feb 03 2025 18:57:55 %S A242268 225,5625,5405625,23765625,2127515625,58503515625,51921031640625, %T A242268 250727431640625,20090404775390625,608180644775390625, %U A242268 498431438615478515625,2642208974615478515625,189450791534674072265625,6319494849134674072265625,9981411957966851806640625 %N A242268 Squares not ending in 00 that remain squares if prefixed with the digit 1. %C A242268 It can easily be shown that all squares that remain squares if prefixed with the digit 1 end in 00 or 25 and, moreover, that all squares ending in 00 are multiples of the squares ending in 5 (factor: 10^(2*n)). %C A242268 Subsequence of A167035. - _Michel Marcus_, Sep 08 2014 %H A242268 Reiner Moewald, <a href="/A242268/b242268.txt">Table of n, a(n) for n = 1..102</a> %e A242268 225 = 15*15 and 1225 = 35*35. %p A242268 A:= {}: %p A242268 for m from 3 to 100 do %p A242268 cand1:= floor(log[5](1/2*(1+sqrt(2))*10^(m/2))); %p A242268 cand2:= floor(log[5](2*(1+sqrt(2))*(5/2)^(m/2))); %p A242268 s1:= 5^cand1 - 10^m/4/5^cand1; %p A242268 s2:= 2^m/4*5^cand2 - 5^(m-cand2); %p A242268 if s1^2 >= 10^(m-1) then A:= A union {s1^2} fi; %p A242268 if s2^2 >= 10^(m-1) then A:= A union {s2^2} fi; %p A242268 od: %p A242268 A; # _Robert Israel_, Sep 08 2014 %o A242268 (Python) %o A242268 import math %o A242268 def power(a, n): %o A242268 pow = 1 %o A242268 for i in range(0, n): %o A242268 pow = pow * a %o A242268 return pow %o A242268 end = 50 %o A242268 for n in range(1, end): %o A242268 l1 = 1/math.log(5)*(math.log(math.sqrt(2)-1)+(n-2)/2*math.log(2))+ n/2 %o A242268 u1 = 1/math.log(5)*(math.log(math.sqrt(11)-1)+(n-3)/2*math.log(2))+ (n-1)/2 %o A242268 if math.ceil(l1) == math.floor(u1) and math.ceil(l1)>0: %o A242268 p = math.ceil(l1) %o A242268 x = power(5, p)*(-1)+power(2, n-2)*power(5, n-p) %o A242268 print(x*x) %o A242268 l2 = 1/math.log(5)*(math.log(math.sqrt(11)+1)+(n-3)/2*math.log(2))+ (n-1)/2 %o A242268 u2 = 1/math.log(5)*(math.log(math.sqrt(2)+1)+(n-2)/2*math.log(2))+ n/2 %o A242268 if math.ceil(l2) == math.floor(u2) and math.ceil(l2)>0: %o A242268 p = math.ceil(l2) %o A242268 x = power(5, p)-power(2, n-2)*power(5, n-p) %o A242268 print(x*x) %o A242268 print('End.') %o A242268 (PARI) %o A242268 for(n=1,10^20,p=n^2;if(p%100,s=concat("1",Str(p));if(issquare(eval(s)),print1(p,", ")))) \\ _Derek Orr_, Aug 23 2014 %Y A242268 Cf. A167035. %K A242268 nonn,base %O A242268 1,1 %A A242268 _Reiner Moewald_, Aug 16 2014