cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A247261 Positive squares not ending in 00 that remain squares when prefixed with 10.

Original entry on oeis.org

5625, 50625, 62187890625, 453097265625, 684420119384765625, 4030118984619140625, 7501588188366851806640625, 35596572549171295166015625, 81913198262420037174224853515625, 311932283242100929355621337890625, 891378408151941675529539585113525390625
Offset: 1

Views

Author

Chai Wah Wu, Sep 10 2014

Keywords

Examples

			5625 and 105625 are both squares.
		

Crossrefs

Programs

  • PARI
    for(n=1,10^7,if(n^2%100&&issquare(10^(#Str(n^2)+1)+n^2),print1(n^2,", "))) \\ Derek Orr, Sep 13 2014

A247263 Positive numbers not divisible by 10 whose squares remain squares when prefixed with 1000.

Original entry on oeis.org

375, 2371875, 6816208478590683385931482169914619837072677910327911376953125, 140221743281593822163509288486586064542459780568606220185756683349609375, 818488127823449514709977488133381451695186814276894438080489635467529296875
Offset: 1

Views

Author

Chai Wah Wu, Sep 11 2014

Keywords

Examples

			375^2 = 140625 and 1000140625 is square.
		

Crossrefs

Programs

  • PARI
    for(n=1,10^20,if(n^2%100&&issquare(10^(#Str(n^2)+3)+n^2),print1(n^2,", "))) \\ Derek Orr, Sep 13 2014

A247264 Smallest positive number not divisible by 10 whose square remains a square when prefixed with 10^n.

Original entry on oeis.org

15, 75, 11252109375, 375, 9694963627295445503856592180983186990852118469774723052978515625, 6841439843263141047421876154427540653587129781953990459442138671875
Offset: 0

Views

Author

Chai Wah Wu, Sep 11 2014

Keywords

Examples

			a(0) = 15 since 15^2 = 225 and 1225 is square and 15 is the smallest number not ending in 0 with this property. a(3) = 375 since 375^2 = 140625 and 1000140625 is square and 375 is the smallest number not ending in 0 with this property.
		

Crossrefs

Programs

  • PARI
    a(n)=k=1;while(k^2%100==0||!issquare(10^(#Str(k^2)+n)+k^2),k++);k^2
    n=0;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Sep 13 2014
Showing 1-3 of 3 results.