This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242274 #58 Oct 08 2024 07:27:47 %S A242274 4,5,8,12,20,24,25,28,32,38,42,44,60,62,66,70,72,80,122,125,148,228, %T A242274 244,270,389,390,432,464,470,488,549,560,804,862 %N A242274 Numbers k such that k*3^k - 1 is semiprime. %C A242274 The semiprimes of this form are 323, 1214, 52487, 6377291, 69735688019, 6778308875543, 21182215236074, 640550188738907, 59296646043258911, ... %C A242274 804 is a term of this sequence. - _Luke March_, Aug 22 2015 %C A242274 The smallest unresolved value of k is now 862. - _Sean A. Irvine_, Jun 20 2022 %C A242274 The smallest unresolved value of k is now 866. - _Tyler Busby_, Oct 06 2023 %C A242274 From _Jon E. Schoenfield_, Oct 06 2023: (Start) %C A242274 After the possible term 866, the only remaining 3-digit terms are 912 and 984, unless 920 is a term. %C A242274 If k is an odd term, then k*3^k - 1 is even, so (k*3^k - 1)/2 is a prime. The next odd terms after 549 are 1125 and 12889. Odd terms are in A366323. (End) %C A242274 26925 is a term. - _Michael S. Branicky_, Oct 08 2024 %t A242274 Select[Range[241], PrimeOmega[# 3^# - 1]==2&] %o A242274 (Magma) IsSemiprime:=func<i | &+[d[2]: d in Factorization(i)] eq 2>; [n: n in [2..241] | IsSemiprime(s) where s is n*3^n-1]; %o A242274 (PARI) isok(n)=bigomega(n*3^n-1)==2 /* _Anders Hellström_, Aug 18 2015 */ %Y A242274 Cf. similar sequence listed in A242273. %Y A242274 Cf. A006553, A060352, A366323. %K A242274 nonn,more %O A242274 1,1 %A A242274 _Vincenzo Librandi_, May 12 2014 %E A242274 a(21)-a(23) from _Carl Schildkraut_, Aug 18 2015 %E A242274 a(24)-a(32) from _Luke March_, Aug 22 2015 %E A242274 a(32) = 804 removed by _Sean A. Irvine_, Apr 25 2022 %E A242274 a(32)-a(33) from _Sean A. Irvine_, Jun 20 2022 %E A242274 a(34) from _Tyler Busby_, Oct 06 2023