A242266 a(n) = |{0 < g < prime(n): g is a primitive root mod prime(n) with g = sum_{j=1..k} prime(j) for some k > 0}|.
0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 1, 3, 2, 2, 3, 3, 2, 3, 3, 1, 3, 2, 3, 3, 5, 2, 2, 6, 2, 4, 1, 3, 2, 3, 5, 2, 2, 2, 6, 6, 6, 7, 2, 6, 4, 4, 4, 5, 6, 5, 6, 3, 1, 3, 7, 9, 9, 2, 5, 2, 2, 6, 4, 5, 6, 6, 4, 3, 8, 3, 6, 6, 7, 5, 6, 9, 8, 6, 4, 4
Offset: 1
Keywords
Examples
a(4) = 1 since prime(1) + prime(2) = 2 + 3 = 5 is a primitive root modulo prime(4) = 7 with 5 < 7. a(7) = 2 since prime(1) = 2 and prime(1) + prime(2) + prime(3) = 2 + 3 + 5 = 10 are not only primitive roots modulo prime(7) = 17 but also smaller than 17. a(53) = 1 since sum_{j=1..10} prime(j) = 129 is a primitive root modulo prime(53) = 241 with 129 < 241.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Notes on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Crossrefs
Programs
-
Mathematica
f[0]=0 f[n_]:=Prime[n]+f[n-1] dv[n_]:=Divisors[n] Do[m=0;Do[If[f[k]>=Prime[n],Goto[cc]];Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,n}];Label[cc];Print[n," ",m];Continue,{n,1,80}]
Comments