cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A242266 a(n) = |{0 < g < prime(n): g is a primitive root mod prime(n) with g = sum_{j=1..k} prime(j) for some k > 0}|.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 1, 3, 2, 2, 3, 3, 2, 3, 3, 1, 3, 2, 3, 3, 5, 2, 2, 6, 2, 4, 1, 3, 2, 3, 5, 2, 2, 2, 6, 6, 6, 7, 2, 6, 4, 4, 4, 5, 6, 5, 6, 3, 1, 3, 7, 9, 9, 2, 5, 2, 2, 6, 4, 5, 6, 6, 4, 3, 8, 3, 6, 6, 7, 5, 6, 9, 8, 6, 4, 4
Offset: 1

Views

Author

Zhi-Wei Sun, May 09 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. In other words, for any odd prime p, there is a positive integer k such that the sum of the first k primes is not only a primitive root modulo p but also smaller than p.
(ii) For any n > 1, there is a number k among 1, ..., n such that sum_{j=1..k}(-1)^(k-j)*prime(j) is a primitive root modulo prime(n).
We have verified parts (i) and (ii) for n up to 700000 and 250000 respectively. Note that prime(700000) > 10^7.

Examples

			a(4) = 1 since prime(1) + prime(2) = 2 + 3 = 5 is a primitive root modulo prime(4) = 7 with 5 < 7.
a(7) = 2 since prime(1) = 2 and prime(1) + prime(2) + prime(3) = 2 + 3 + 5 = 10 are not only primitive roots modulo prime(7) = 17 but also smaller than 17.
a(53) = 1 since sum_{j=1..10} prime(j) = 129 is a primitive root modulo prime(53) = 241 with 129 < 241.
		

Crossrefs

Programs

  • Mathematica
    f[0]=0
    f[n_]:=Prime[n]+f[n-1]
    dv[n_]:=Divisors[n]
    Do[m=0;Do[If[f[k]>=Prime[n],Goto[cc]];Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,n}];Label[cc];Print[n," ",m];Continue,{n,1,80}]
Showing 1-1 of 1 results.