cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242280 a(n) = Sum_{k=0..n} (k! * Stirling2(n,k))^3.

This page as a plain text file.
%I A242280 #15 Apr 06 2025 05:28:14
%S A242280 1,1,9,433,63225,18954001,10159366329,8924902306993,11969476975085625,
%T A242280 23232038620328946001,62655369716047066046649,
%U A242280 227268291642918880258797553,1079475019974966974009683584825,6565863403062578428919598754170001
%N A242280 a(n) = Sum_{k=0..n} (k! * Stirling2(n,k))^3.
%C A242280 Generally, for p>=1 is Sum_{k=0..n} (k!*StirlingS2(n,k))^p asymptotic to n^(p*n+1/2) * sqrt(Pi/(2*p*(1-log(2))^(p-1))) / (exp(p*n) * log(2)^(p*n+1)).
%H A242280 G. C. Greubel, <a href="/A242280/b242280.txt">Table of n, a(n) for n = 0..169</a>
%F A242280 a(n) ~ sqrt(Pi/6) * n^(3*n+1/2) / ((1-log(2)) * exp(3*n) * (log(2))^(3*n+1)).
%F A242280 a(n) = (n!)^3 * [(x*y*z)^n] 1 / (1 - (exp(x) - 1) * (exp(y) - 1) * (exp(z) - 1)). - _Seiichi Manyama_, Apr 06 2025
%t A242280 Table[Sum[(k!)^3 * StirlingS2[n,k]^3,{k,0,n}],{n,0,20}]
%o A242280 (PARI) a(n) = sum(k=0, n, (k!*stirling(n, k, 2))^3); \\ _Seiichi Manyama_, Apr 06 2025
%Y A242280 Cf. A000670, A048144.
%K A242280 nonn,easy
%O A242280 0,3
%A A242280 _Vaclav Kotesovec_, May 10 2014