cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242283 a(n) = Sum_{k=0..n} (k!)^6 * StirlingS2(n,k)^3.

This page as a plain text file.
%I A242283 #8 Oct 23 2023 12:10:57
%S A242283 1,1,65,48385,201202625,3177816192001,149444281172914625,
%T A242283 17688550295661103160065,4659004670032668841494537665,
%U A242283 2485460204094055083075883434816001,2493268982658347340546535733064008565185,4428569787044987118931586341533071670315481345
%N A242283 a(n) = Sum_{k=0..n} (k!)^6 * StirlingS2(n,k)^3.
%C A242283 Generally, for p>=1 is Sum_{k=0..n} (k!)^(2*p) * StirlingS2(n,k)^p asymptotic to c * (n!)^(2*p), where c = 1 + Sum_{n>=1} 1/(Product_{k=1..n} (2*k)^p).
%F A242283 a(n) ~ c * (n!)^6, where c = 1.1269621849236767... = 1 + Sum_{n>=1} 1/(Product_{k=1..n} (2*k)^3) = HypergeometricPFQ[{}, {1, 1}, 1/8].
%p A242283 a:= n-> add(k!^6*Stirling2(n,k)^3, k=0..n):
%p A242283 seq(a(n), n=0..15);  # _Alois P. Heinz_, Oct 23 2023
%t A242283 Table[Sum[(k!)^6 * StirlingS2[n,k]^3,{k,0,n}],{n,0,20}]
%Y A242283 Cf. A064618 (p=1), A242282 (p=2).
%K A242283 nonn,easy
%O A242283 0,3
%A A242283 _Vaclav Kotesovec_, May 10 2014