This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242283 #8 Oct 23 2023 12:10:57 %S A242283 1,1,65,48385,201202625,3177816192001,149444281172914625, %T A242283 17688550295661103160065,4659004670032668841494537665, %U A242283 2485460204094055083075883434816001,2493268982658347340546535733064008565185,4428569787044987118931586341533071670315481345 %N A242283 a(n) = Sum_{k=0..n} (k!)^6 * StirlingS2(n,k)^3. %C A242283 Generally, for p>=1 is Sum_{k=0..n} (k!)^(2*p) * StirlingS2(n,k)^p asymptotic to c * (n!)^(2*p), where c = 1 + Sum_{n>=1} 1/(Product_{k=1..n} (2*k)^p). %F A242283 a(n) ~ c * (n!)^6, where c = 1.1269621849236767... = 1 + Sum_{n>=1} 1/(Product_{k=1..n} (2*k)^3) = HypergeometricPFQ[{}, {1, 1}, 1/8]. %p A242283 a:= n-> add(k!^6*Stirling2(n,k)^3, k=0..n): %p A242283 seq(a(n), n=0..15); # _Alois P. Heinz_, Oct 23 2023 %t A242283 Table[Sum[(k!)^6 * StirlingS2[n,k]^3,{k,0,n}],{n,0,20}] %Y A242283 Cf. A064618 (p=1), A242282 (p=2). %K A242283 nonn,easy %O A242283 0,3 %A A242283 _Vaclav Kotesovec_, May 10 2014