cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242292 Least prime divisor of 2^n - n which does not divide any 2^k - k with 0 < k < n, or 1 if such a primitive prime divisor of 2^n - n does not exist.

Original entry on oeis.org

1, 2, 5, 3, 1, 29, 11, 31, 503, 13, 7, 1021, 8179, 1637, 4679, 1, 8737, 131063, 524269, 262139, 2097131, 349, 131, 773, 271, 197, 457, 1493, 317, 17, 6733, 73, 41, 157109, 83, 53, 1741, 3329, 49977801259, 997, 149, 2199023255531, 61, 4398046511093, 3769453
Offset: 1

Views

Author

Zhi-Wei Sun, May 10 2014

Keywords

Comments

Conjecture: a(n) = 1 only for n = 1, 5, 16.
In constrast, a classical theorem of Bang asserts that if n > 1 is different from 6 then 2^n - 1 has a prime divisor which does not divide any 2^k - 1 with 0 < k < n.

Examples

			a(4) = 3 since 2^4 - 4 = 2^2*3 with 3 dividing none of 2^1 - 1 = 1, 2^2 - 2 = 2 and 2^3 - 3 = 5.
		

References

  • A. S. Bang, Taltheoretiske Undersgelser, Tidsskrift fur Mat. 4(1886), no. 5, 70--80, 130--137.

Crossrefs

Programs

  • Mathematica
    u[n_]:=2^n-n
    f[n_]:=FactorInteger[u[n]]
    p[n_]:=Table[Part[Part[f[n], k], 1], {k, 1, Length[f[n]]}]
    Do[If[u[n]<2, Goto[cc]]; Do[Do[If[Mod[u[i], Part[p[n], k]]==0, Goto[aa]], {i, 1, n-1}]; Print[n, " ", Part[p[n], k]]; Goto[bb]; Label[aa]; Continue, {k, 1, Length[p[n]]}]; Label[cc]; Print[n, " ", 1]; Label[bb]; Continue, {n, 1, 45}]