A242292 Least prime divisor of 2^n - n which does not divide any 2^k - k with 0 < k < n, or 1 if such a primitive prime divisor of 2^n - n does not exist.
1, 2, 5, 3, 1, 29, 11, 31, 503, 13, 7, 1021, 8179, 1637, 4679, 1, 8737, 131063, 524269, 262139, 2097131, 349, 131, 773, 271, 197, 457, 1493, 317, 17, 6733, 73, 41, 157109, 83, 53, 1741, 3329, 49977801259, 997, 149, 2199023255531, 61, 4398046511093, 3769453
Offset: 1
Keywords
Examples
a(4) = 3 since 2^4 - 4 = 2^2*3 with 3 dividing none of 2^1 - 1 = 1, 2^2 - 2 = 2 and 2^3 - 3 = 5.
References
- A. S. Bang, Taltheoretiske Undersgelser, Tidsskrift fur Mat. 4(1886), no. 5, 70--80, 130--137.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..215
- Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
Crossrefs
Programs
-
Mathematica
u[n_]:=2^n-n f[n_]:=FactorInteger[u[n]] p[n_]:=Table[Part[Part[f[n], k], 1], {k, 1, Length[f[n]]}] Do[If[u[n]<2, Goto[cc]]; Do[Do[If[Mod[u[i], Part[p[n], k]]==0, Goto[aa]], {i, 1, n-1}]; Print[n, " ", Part[p[n], k]]; Goto[bb]; Label[aa]; Continue, {k, 1, Length[p[n]]}]; Label[cc]; Print[n, " ", 1]; Label[bb]; Continue, {n, 1, 45}]
Comments