This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242300 #41 Feb 09 2024 11:16:44 %S A242300 0,2,11,35,105,292,796,2130,5655,14927,39281,103160,270600,709282, %T A242300 1858291,4867275,12746265,33375932,87388676,228801650,599034975, %U A242300 1568333527,4106014561,10749789360,28143481680,73680863042,192899442971,505018008755,1322155461705 %N A242300 a(n) = Sum_{0<=i<j<=n}L(i)*L(j), where L(k)=A000032(k) is the k-th Lucas number. %C A242300 This sequence does for Lucas numbers what A190173 does for Fibonacci numbers. %H A242300 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-6,4,2,-1). %F A242300 The sums are (1) for L(2*k): (L(2*k+1)-1)^2 + L(2*k-1) + 1 and (2) for L(2*k+1): (L(2*k+2)-1)^2 + L(2*k) - 4. %F A242300 G.f.: -x*(x^3+5*x^2-3*x-2) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)). - _Colin Barker_, May 12 2014 %F A242300 a(n) = (L(n+1)-1)^2 + L(n-1) + (5*(-1)^n-3)/2. - _Colin Barker_, May 13 2014 %e A242300 For L(12) = a(13) the sum is (L(13)-1)^2 + L(11) + 1 = 520^2 + 200 = 270600 and for L(13) = a(14) the sum is (L(14)-1)^2 + l(12) - 4 = 842^2 + 322 - 4 = 709282. %o A242300 (PARI) concat(0, Vec(-x*(x^3+5*x^2-3*x-2)/((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)) + O(x^100))) \\ _Colin Barker_, May 13 2014 %o A242300 (Sage) %o A242300 [(lucas_number2(i+1,1,-1)-1)^2+lucas_number2(i-1,1,-1)+(5*(-1)^i-3)/2 for i in [0..50]] # _Tom Edgar_, May 13 2014 %Y A242300 Cf. A000032, A190173. %K A242300 nonn,easy %O A242300 0,2 %A A242300 _J. M. Bergot_, May 10 2014 %E A242300 Typo in a(18) fixed by _Colin Barker_, May 12 2014 %E A242300 More terms from _Colin Barker_, May 12 2014