cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A242317 Number of length n+2+2 0..2 arrays with every value 0..2 appearing at least once in every consecutive 2+3 elements, and new values 0..2 introduced in order.

Original entry on oeis.org

25, 61, 145, 337, 781, 1829, 4269, 9957, 23233, 54225, 126533, 295265, 689021, 1607877, 3752057, 8755625, 20431737, 47678569, 111260509, 259632437, 605866385, 1413822053, 3299230409, 7698933081, 17965877829, 41924350093, 97832744293
Offset: 1

Views

Author

R. H. Hardin, May 10 2014

Keywords

Comments

Column 2 of A242322.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....0....1....0....0....1....1....1
..0....2....1....2....1....0....2....1....0....1....0....1....1....0....1....2
..1....2....2....0....2....1....2....2....0....2....2....1....0....2....0....0
..2....0....0....1....0....2....2....2....2....2....2....2....2....1....2....1
..1....2....2....0....2....0....0....0....1....0....1....2....2....2....1....2
..1....1....1....2....2....1....1....1....0....1....2....0....2....0....2....1
..0....1....2....2....1....1....1....0....0....2....0....1....1....2....0....2
..0....0....2....0....2....0....2....0....1....2....2....0....0....0....2....0
		

Crossrefs

Cf. A242322.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3) + 2*a(n-4) - a(n-5) - a(n-6).
Empirical g.f.: x*(25 + 36*x + 34*x^2 + 20*x^3 - 18*x^4 - 13*x^5) / ((1 + x)*(1 - 2*x - 2*x^3 + x^5)). - Colin Barker, Mar 19 2018

A242318 Number of length n+3+2 0..3 arrays with every value 0..3 appearing at least once in every consecutive 3+3 elements, and new values 0..3 introduced in order.

Original entry on oeis.org

65, 185, 503, 1316, 3398, 8801, 23069, 60197, 156887, 408962, 1066514, 2781611, 7253453, 18914369, 49323167, 128621684, 335409314, 874649537, 2280834353, 5947765493, 15510073823, 40445831522, 105471145814, 275038567523
Offset: 1

Views

Author

R. H. Hardin, May 10 2014

Keywords

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....1....0....1....0....1....1....0....1....1....1....1....1....1
..0....1....0....2....1....1....1....2....1....1....2....2....2....1....2....2
..1....2....1....0....2....2....2....3....2....2....3....0....0....2....3....3
..2....3....2....3....0....3....3....1....3....3....2....3....1....1....0....1
..3....0....3....3....3....0....2....2....0....1....0....2....3....3....1....1
..1....1....0....1....2....1....0....0....1....0....3....2....2....0....3....0
..3....1....2....2....1....2....3....2....0....2....1....1....0....1....1....2
..0....2....1....0....3....1....1....3....2....3....0....2....2....2....2....0
..3....0....1....0....2....3....1....0....2....0....0....0....3....3....3....3
		

Crossrefs

Column 3 of A242322.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) + 3*a(n-3) + 5*a(n-4) + 6*a(n-5) - a(n-6) - a(n-7) - a(n-9) - a(n-10).
Empirical g.f.: x*(65 + 120*x + 188*x^2 + 248*x^3 + 196*x^4 - 53*x^5 - 36*x^6 - 16*x^7 - 49*x^8 - 35*x^9) / (1 - x - 2*x^2 - 3*x^3 - 5*x^4 - 6*x^5 + x^6 + x^7 + x^9 + x^10). - Colin Barker, Nov 01 2018

A242319 Number of length n+4+2 0..4 arrays with every value 0..4 appearing at least once in every consecutive 4+3 elements, and new values 0..4 introduced in order.

Original entry on oeis.org

140, 440, 1300, 3648, 10012, 27368, 75236, 208976, 577964, 1596216, 4408020, 12176768, 33645500, 92967176, 256849892, 709617776, 1960543660, 5416680632, 14965468916, 41347189280, 114235439996, 315613828040, 871989852740
Offset: 1

Views

Author

R. H. Hardin, May 10 2014

Keywords

Comments

Column 4 of A242322

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....0....1....1....1....0....0....1....1....1
..0....2....2....2....0....0....1....1....2....2....2....1....1....0....2....2
..2....1....2....3....2....2....2....2....3....2....0....2....2....2....0....0
..3....3....3....3....3....3....3....2....1....3....3....1....0....3....3....3
..2....0....4....0....4....0....4....3....4....4....4....3....3....2....4....1
..4....4....1....4....0....4....0....4....0....1....1....4....4....4....1....4
..3....1....0....2....0....1....2....0....3....0....0....2....1....1....2....0
..1....2....2....1....1....2....1....1....2....1....2....0....2....0....0....0
..0....2....0....4....2....0....2....2....1....2....3....4....2....0....1....2
..3....1....4....4....0....3....4....3....1....4....0....1....4....4....4....3
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) +6*a(n-4) +10*a(n-5) +12*a(n-6) -4*a(n-7) -6*a(n-8) -6*a(n-9) -2*a(n-11) -2*a(n-12) +a(n-14) +a(n-15)

A242320 Number of length n+5+2 0..5 arrays with every value 0..5 appearing at least once in every consecutive 5+3 elements, and new values 0..5 introduced in order.

Original entry on oeis.org

266, 896, 2801, 8231, 23486, 66366, 187671, 533801, 1530356, 4371836, 12472691, 35574971, 101483076, 289556006, 826266561, 2357781941, 6727551746, 19195784876, 54771887681, 156283330211, 445932182766, 1272403116946
Offset: 1

Views

Author

R. H. Hardin, May 10 2014

Keywords

Comments

Column 5 of A242322.

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....0....1....1....1....1....1....0....1....1....0....1....1....1
..0....2....2....0....2....2....2....0....2....1....2....0....1....2....1....1
..2....3....3....1....3....3....3....2....3....2....0....2....1....3....2....2
..3....0....1....2....4....4....1....3....0....2....3....3....2....4....3....3
..4....4....4....3....0....1....4....3....4....3....4....4....3....5....4....1
..5....4....5....4....5....0....5....4....5....4....4....1....4....3....5....4
..1....5....2....5....1....5....0....5....2....5....5....5....5....0....0....5
..3....1....0....2....2....2....3....1....3....4....1....0....0....1....2....0
..3....0....2....1....0....3....2....3....1....0....2....1....1....4....1....3
..0....2....3....0....3....1....3....0....3....1....0....4....4....2....1....3
..2....3....5....2....1....0....3....2....5....1....0....2....2....1....0....2
		

Crossrefs

Cf. A242322.

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) +7*a(n-4) +13*a(n-5) +22*a(n-6) +28*a(n-7) -4*a(n-8) -6*a(n-9) -6*a(n-10) -4*a(n-12) -10*a(n-13) -10*a(n-14) +a(n-16) +a(n-17) +a(n-20) +a(n-21).

A242321 Number of length n+6+2 0..6 arrays with every value 0..6 appearing at least once in every consecutive 6+3 elements, and new values 0..6 introduced in order.

Original entry on oeis.org

462, 1638, 5334, 16194, 47466, 137166, 395166, 1141290, 3312546, 9669270, 28147842, 81849030, 237928206, 691657866, 2010909066, 5847101166, 17002342422, 49439204898, 143753422386, 417985825410, 1215362762970, 3533881164654
Offset: 1

Views

Author

R. H. Hardin, May 10 2014

Keywords

Comments

Column 6 of A242322

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....1....1....0....1....1....1....1....0....0....1....1....1....1
..0....2....1....2....2....1....2....0....2....2....0....1....2....2....2....0
..2....3....2....3....0....2....0....2....3....3....1....2....0....3....3....2
..3....4....3....0....3....3....3....2....4....4....2....3....3....2....4....3
..4....3....4....4....4....1....2....3....5....0....3....4....4....4....5....4
..1....5....2....2....5....4....4....4....6....1....4....2....5....5....6....2
..5....1....5....5....6....5....5....5....0....5....5....5....1....6....2....5
..6....6....6....6....0....6....6....6....1....6....6....6....6....1....1....6
..0....0....0....3....1....0....2....4....2....2....1....1....2....0....0....3
..2....2....5....1....2....2....1....1....5....3....0....0....5....3....3....1
..3....4....1....1....2....1....1....0....3....5....6....5....5....6....3....0
..5....4....0....1....4....2....0....0....5....2....4....0....0....5....3....1
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) +8*a(n-4) +14*a(n-5) +26*a(n-6) +44*a(n-7) +56*a(n-8) -11*a(n-9) -19*a(n-10) -28*a(n-11) -28*a(n-12) -8*a(n-14) -20*a(n-15) -20*a(n-16) +5*a(n-18) +11*a(n-19) +10*a(n-20) +2*a(n-23) +2*a(n-24) -a(n-27) -a(n-28)
Showing 1-5 of 5 results.