This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242323 #25 Feb 16 2025 08:33:22 %S A242323 65536,352256,1442816,5313536,18323520,60481632,192562808,593792608, %T A242323 1782459992,5221699004,14967607810,42060446246,116067269324 %N A242323 Number of binary words of length n that contain all 32 5-bit words as (possibly overlapping) contiguous subwords. %H A242323 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CoinTossing.html">Coin Tossing</a> %e A242323 a(36) = 65536: 000001000110010100111010110111110000, ... . %p A242323 b:= proc(n, t, s) option remember; `if`(s={}, 2^n, %p A242323 `if`(nops(s)>n, 0, b(n-1, irem(2*t, 16), s minus {2*t}) %p A242323 +b(n-1, irem(2*t+1, 16), s minus {2*t+1}))) %p A242323 end: %p A242323 a:= n-> add(b(n-4, j, {$0..31}), j=0..15): %p A242323 seq(a(n), n=36..37); %t A242323 b[n_, t_, s_] := b[n, t, s] = If[s == {}, 2^n, %t A242323 If[Length[s] > n, 0, b[n-1, Mod[2*t, 16], s~Complement~{2*t}] + %t A242323 b[n-1, Mod[2*t+1, 16], s~Complement~{2*t+1}]]]; %t A242323 a[n_] := Sum[b[n-4, j, Range[0, 31]], {j, 0, 15}]; %t A242323 Table[a[n], {n, 36, 39}] (* _Jean-François Alcover_, Sep 06 2022, after _Alois P. Heinz_ *) %Y A242323 Cf. A001146, A052944, A242167, A242206, A242257. %K A242323 nonn,more %O A242323 36,1 %A A242323 _Alois P. Heinz_, May 10 2014 %E A242323 a(44)-a(48) from _Alois P. Heinz_, Feb 27 2015