cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242323 Number of binary words of length n that contain all 32 5-bit words as (possibly overlapping) contiguous subwords.

This page as a plain text file.
%I A242323 #25 Feb 16 2025 08:33:22
%S A242323 65536,352256,1442816,5313536,18323520,60481632,192562808,593792608,
%T A242323 1782459992,5221699004,14967607810,42060446246,116067269324
%N A242323 Number of binary words of length n that contain all 32 5-bit words as (possibly overlapping) contiguous subwords.
%H A242323 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CoinTossing.html">Coin Tossing</a>
%e A242323 a(36) = 65536: 000001000110010100111010110111110000, ... .
%p A242323 b:= proc(n, t, s) option remember; `if`(s={}, 2^n,
%p A242323       `if`(nops(s)>n, 0, b(n-1, irem(2*t, 16), s minus {2*t})
%p A242323         +b(n-1, irem(2*t+1, 16), s minus {2*t+1})))
%p A242323     end:
%p A242323 a:= n-> add(b(n-4, j, {$0..31}), j=0..15):
%p A242323 seq(a(n), n=36..37);
%t A242323 b[n_, t_, s_] := b[n, t, s] = If[s == {}, 2^n,
%t A242323    If[Length[s] > n, 0, b[n-1, Mod[2*t, 16], s~Complement~{2*t}] +
%t A242323    b[n-1, Mod[2*t+1, 16], s~Complement~{2*t+1}]]];
%t A242323 a[n_] := Sum[b[n-4, j, Range[0, 31]], {j, 0, 15}];
%t A242323 Table[a[n], {n, 36, 39}] (* _Jean-François Alcover_, Sep 06 2022, after _Alois P. Heinz_ *)
%Y A242323 Cf. A001146, A052944, A242167, A242206, A242257.
%K A242323 nonn,more
%O A242323 36,1
%A A242323 _Alois P. Heinz_, May 10 2014
%E A242323 a(44)-a(48) from _Alois P. Heinz_, Feb 27 2015