This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242327 #37 Apr 11 2020 06:02:37 %S A242327 132749,1175411,3940799,5278571,11047709,12390251,15118769,21967241, %T A242327 22234871,26568929,31809959,32229341,32969591,35760551,38704661, %U A242327 43124831,43991081,49248971,50227211,51140861,53221631,55568171,59446109,63671651,71109161,76675589 %N A242327 Primes p for which (p^n) + 2 is prime for n = 1, 3, 5, and 7. %C A242327 Subsequence of A001359 and A048637. %H A242327 Abhiram R Devesh, <a href="/A242327/b242327.txt">Table of n, a(n) for n = 1..50</a> %e A242327 p = 132749 (prime); %e A242327 p + 2 = 132751 (prime); %e A242327 p^3 + 2 = 2339342304585751 (prime); %e A242327 p^5 + 2 = 41224584878413873150038751 (prime); %e A242327 p^7 + 2 = 726471878470342746448722269536491751 (prime). %o A242327 (Python) %o A242327 import sympy %o A242327 from sympy.ntheory import isprime, nextprime %o A242327 n=2 %o A242327 while True: %o A242327 n1=n+2 %o A242327 n2=n**3+2 %o A242327 n3=n**5+2 %o A242327 n4=n**7+2 %o A242327 ##.Check if n1, n2, n3 and n4 are also primes %o A242327 if all(isprime(x) for x in [n1, n2, n3, n4]): %o A242327 print(n, ", ", n1, ", ", n2, ", ", n3, ", ", n4) %o A242327 n=nextprime(n) %o A242327 (PARI) isok(p) = isprime(p) && isprime(p+2) && isprime(p^3+2) && isprime(p^5+2) && isprime(p^7+2); \\ _Michel Marcus_, May 15 2014 %o A242327 (Sage) %o A242327 def is_A242327(n): %o A242327 return is_prime(n) and all([is_prime(n^(2*k+1)+2) for k in range(4)]) %o A242327 filter(is_A242327, range(3940800)) # _Peter Luschny_, May 15 2014 %Y A242327 Cf. A001359, A006512, A048637. %K A242327 nonn %O A242327 1,1 %A A242327 _Abhiram R Devesh_, May 10 2014