This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242338 #30 Sep 08 2022 08:46:08 %S A242338 1,5,12,21,42,50,60,242,272 %N A242338 Numbers k such that k*7^k-1 is semiprime. %C A242338 The semiprimes of this form are: 6, 84034, 166095446411, 11729463145748964146, 13102886255950779594655873516522994057, ... %C A242338 From _Robert Israel_, Aug 19 2014: (Start) %C A242338 If k is odd, k is in the sequence iff (k*7^k-1)/2 is prime. %C A242338 If k == 1 (mod 3), k is in the sequence iff (k*7^k-1)/3 is prime. %C A242338 a(10) >= 506. 506*7^506 - 1 is a 431-digit composite which apparently has not been factored. %C A242338 (End) %H A242338 Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/cw.html">Cullen and Woodall numbers and their generalization to other bases</a> %H A242338 Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/7-.txt">Factorizations of n*7^n-1</a> %p A242338 issemiprime:= proc(n) local F,t; %p A242338 F:= ifactors(n,easy)[2]; %p A242338 t:= add(f[2],f=F); %p A242338 if t = 1 then %p A242338 if type(F[1][1],integer) then return false fi %p A242338 elif t = 2 then %p A242338 return not hastype(F,name) %p A242338 else # t > 2 %p A242338 return false %p A242338 fi; %p A242338 F:= ifactors(n)[2]; %p A242338 return evalb(add(f[2],f=F)=2); %p A242338 end proc: %p A242338 select(n -> `if`(n::odd, isprime((n*7^n-1)/2), %p A242338 issemiprime(n*7^n-1)), [$1..100]); # _Robert Israel_, Aug 19 2014 %t A242338 Select[Range[80], PrimeOmega[# 7^# - 1]==2&] %o A242338 (Magma) IsSemiprime:=func<i | &+[d[2]: d in Factorization(i)] eq 2>; [n: n in [2..80] | IsSemiprime(s) where s is n*7^n-1]; %o A242338 (PARI) for(n=1,100,if(bigomega(n*7^n-1)==2,print1(n,", "))) \\ _Derek Orr_, Aug 20 2014 %Y A242338 Cf. similar sequences listed in A242273. %Y A242338 Cf. A001358, A064753, A242200. %K A242338 nonn,more %O A242338 1,2 %A A242338 _Vincenzo Librandi_, May 12 2014 %E A242338 a(1) = 1 prepended and comment amended by _Harvey P. Dale_, Aug 12 2014 %E A242338 a(8) and a(9) from _Robert Israel_, Aug 20 2014