This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242344 #16 Feb 21 2023 10:46:15 %S A242344 6,28,36,120,136,171,276,300,325,528,561,780,820,903,1081,1128,1176, %T A242344 1275,1540,1596,1653,2080,2211,2415,2485,2556,2775,3160,3240,3403, %U A242344 3655,3828,4371,4851,5151,5253,5356,5460,5995,6105,6328,6441,6903,7381,7503,8001,8256 %N A242344 Triangular numbers T such that T-2 is semiprime. %C A242344 The n-th triangular number T(n) = n*(n+1)/2. %C A242344 Triangular numbers of the form p*q + 2, where p and q are primes (not necessarily distinct). %H A242344 K. D. Bajpai and N. J. A. Sloane, <a href="/A242344/b242344.txt">Table of n, a(n) for n = 1..27939</a> [First 10000 terms from K. D. Bajpai] %e A242344 a(2) = 28 = 7*(7+1)/2 = 28 - 2 = 26 = 2 * 13 is semiprime. %e A242344 a(3) = 36 = 8*(8+1)/2 = 36 - 2 = 34 = 2 * 17 is semiprime. %p A242344 with(numtheory): A242344:= proc()local t; t:=x*(x+1)/2;if bigomega(t-2)=2 then RETURN (t); fi;end: seq(A242344(),x=1..200); %t A242344 Select[Table[n*(n + 1)/2, {n, 200}], PrimeOmega[# - 2] == 2 &] %t A242344 Select[Accumulate[Range[200]],PrimeOmega[#-2]==2&] (* _Harvey P. Dale_, Feb 21 2023 *) %Y A242344 Cf. A001358, A000217, A063637, A063638. %K A242344 nonn %O A242344 1,1 %A A242344 _K. D. Bajpai_, May 11 2014