A242345 Number of primes p < prime(n) with p and 2^p - p both primitive roots modulo prime(n).
0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 4, 4, 7, 1, 2, 1, 1, 1, 6, 4, 1, 4, 2, 6, 3, 7, 1, 3, 7, 4, 6, 1, 5, 6, 9, 12, 7, 5, 6, 4, 11, 2, 3, 6, 12, 6, 18, 13, 3, 14, 13, 14, 15, 4, 9, 6, 3, 13, 8, 12, 5, 12, 6, 6, 20, 8, 14, 19, 8, 5, 5, 22, 20, 6, 18, 6
Offset: 1
Keywords
Examples
a(4) = 1 since 3 is a prime smaller than prime(4) = 7, and both 3 and 2^3 - 3 = 5 are primitive roots modulo 7. a(10) = 1 since 2 is a prime smaller than prime(10) = 29, and 2 and 2^2 - 2 are primitive roots modulo 29. a(36) = 1 since 71 is a prime smaller than prime(36) = 151, and both 71 and 2^(71) - 71 ( == 14 (mod 151)) are primitive roots modulo 151.
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..3500
- Zhi-Wei Sun, Notes on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
f[k_]:=2^(Prime[k])-Prime[k] dv[n_]:=Divisors[n] Do[m=0;Do[If[Mod[f[k],Prime[n]]==0,Goto[aa],Do[If[Mod[(Prime[k])^(Part[dv[Prime[n]-1],i]),Prime[n]]==1||Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}]];m=m+1;Label[aa];Continue,{k,1,n-1}]; Print[n," ",m];Continue,{n,1,80}]
Comments