This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242352 #34 Feb 09 2015 10:33:32 %S A242352 1,1,2,4,1,9,6,21,29,2,51,124,28,127,499,241,10,323,1933,1667,216,1, %T A242352 835,7307,10142,2765,98,2188,27166,56748,27214,2637,22,5798,99841, %U A242352 299485,227847,44051,1546,2,15511,363980,1514445,1708700,563444,46947,570 %N A242352 Number T(n,k) of isoscent sequences of length n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=n+2-ceiling(2*sqrt(n+1)), read by rows. %C A242352 An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)]. %C A242352 Columns k=0-10 give: A001006, A243474, A243475, A243476, A243477, A243478, A243479, A243480, A243481, A243482, A243483. %C A242352 Row sums give A000110. %C A242352 Last elements of rows give A243484. %H A242352 Joerg Arndt and Alois P. Heinz, <a href="/A242352/b242352.txt">Rows n = 0..114, flattened</a> %e A242352 T(4,0) = 9: [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,1], [0,0,1,2], [0,0,2,2], [0,1,1,1], [0,1,1,2]. %e A242352 T(4,1) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0]. %e A242352 T(5,2) = 2: [0,0,2,1,0], [0,1,0,1,0]. %e A242352 Triangle T(n,k) begins: %e A242352 : 1; %e A242352 : 1; %e A242352 : 2; %e A242352 : 4, 1; %e A242352 : 9, 6; %e A242352 : 21, 29, 2; %e A242352 : 51, 124, 28; %e A242352 : 127, 499, 241, 10; %e A242352 : 323, 1933, 1667, 216, 1; %e A242352 : 835, 7307, 10142, 2765, 98; %e A242352 : 2188, 27166, 56748, 27214, 2637, 22; %p A242352 b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add( %p A242352 `if`(j<i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1))) %p A242352 end: %p A242352 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)): %p A242352 seq(T(n), n=0..15); %t A242352 b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j<i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[ p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, Feb 09 2015, after Maple *) %Y A242352 Cf. A048993 (for counting level steps), A242351 (for counting ascents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479. %K A242352 nonn,tabf %O A242352 0,3 %A A242352 _Joerg Arndt_ and _Alois P. Heinz_, May 11 2014