This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242355 #21 Feb 16 2019 06:40:03 %S A242355 8,128,1416,13568,119960,1009440,8205656,65068352,506193144, %T A242355 3879735776,29378067080,220265711040,1637726387096,12091336503584, %U A242355 88727095777896,647661676223168,4705654523841704,34049855885188128,245482626441965048,1764039730476165824 %N A242355 Sum of squared end-to-end distances of all n-step self-avoiding walks on the 4-d cubic lattice. %H A242355 Hugo Pfoertner, <a href="/A242355/b242355.txt">Table of n, a(n) for n = 1..24</a> [4th column in Table A6 from Clisby article below] %H A242355 N. Clisby, R. Liang and G. Slade <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a> J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017. %H A242355 N. Clisby, R. Liang and G. Slade <a href="http://www.math.ubc.ca/~slade/lacecounts/">Self-avoiding walk enumeration via the lace expansion</a>. Tables in machine-readable format. %H A242355 Hugo Pfoertner, <a href="http://www.randomwalk.de/stw4d.html">Results for the 4D Self-Trapping Random Walk</a>. %Y A242355 Cf. A010575 corresponding number of walks, A118313 end-to-end distances for cubic lattice, A078797 end-to-end distances for quadratic lattice, A323856, A323857. %K A242355 nonn %O A242355 1,1 %A A242355 _Hugo Pfoertner_, Aug 16 2014