cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242361 Irregular triangular array of denominators of the positive rational numbers ordered as in Comments.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 1, 3, 5, 3, 5, 2, 5, 8, 4, 5, 8, 4, 3, 1, 4, 8, 7, 13, 7, 4, 8, 7, 13, 7, 3, 5, 2, 7, 13, 7, 12, 21, 11, 11, 5, 7, 13, 7, 12, 21, 11, 11, 5, 5, 8, 4, 3, 1, 5, 11, 11, 21, 12, 9, 19, 18, 34, 19, 10, 18, 9, 5, 11, 11, 21, 12, 9, 19, 18, 34
Offset: 1

Views

Author

Clark Kimberling, Jun 08 2014

Keywords

Comments

Let F = A000045 (the Fibonacci numbers). To construct the array of positive rationals, decree that row 1 is (1) and row 2 is (2). Thereafter, row n consists of the following numbers in increasing order: the F(n-2) numbers 1/x from numbers x > 1 in row n-1, together with the F(n-3) numbers 1 + 1/x from numbers x < 1 in row n - 1, together with the F(n - 2) numbers (2*x + 1)/ (x + 1) from numbers x in row n-2. Row n consists of F(n) numbers ranging from 1/((n+1)/2) to n/2 if n is odd and from 2/(n-1) to (n+2)/2 if n is even.

Examples

			First 6 rows of the array of rationals:
1/1
2/1
1/2 ... 3/2
2/3 ... 5/3 ... 3/1
1/3 ... 3/5 ... 4/3 ... 8/5 ... 5/2
2/5 ... 5/8 ... 3/4 ... 7/5 ... 13/8 .. 7/4 ... 8/3 ... 4/1
The denominators, by rows:  1,1,2,2,3,3,1,3,5,3,5,2,5,8,4,5,8,4,3,1,...
		

Crossrefs

Programs

  • Mathematica
    z = 18; g[1] = {1}; f1[x_] := 1 + 1/x; f2[x_] := 1/x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
    h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
    g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
    u = Table[g[n], {n, 1, z}]; v = Flatten[u]; Length[v]
    Denominator[v];  (* A242361 *)
    Numerator[v];    (* A242363 *)