cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242365 Irregular triangular array of the positive integers ordered as in Comments.

This page as a plain text file.
%I A242365 #8 Jun 13 2014 05:04:43
%S A242365 1,2,4,8,3,16,6,5,32,12,10,9,7,64,24,20,18,17,15,14,13,128,48,40,36,
%T A242365 34,33,31,30,29,28,26,25,11,256,96,80,72,68,66,65,63,62,61,60,58,57,
%U A242365 56,52,50,49,23,22,21,19,512,192,160,144,136,132,130,129,127
%N A242365 Irregular triangular array of the positive integers ordered as in Comments.
%C A242365 As in A242364, let f1(x) = 2x, f2(x) = 1-x, f3(x) = 2-x, g(1) = (1), and g(n) = union(f1(g(n-1)), f2(g(n-1)),f3(g(n-1))) for n >1.  Let T be the array whose n-th row consists of the positive numbers in g(n) arranged in increasing order.  It is easy to prove that every positive integer occurs exactly once in T.
%C A242365 Conjectures:  (1)  |g(n)| = F(n-1) for n >=2, where F = A000045 (the Fibonacci numbers); (2) the number of even numbers in g(n) is F(n-2) and the number of odd numbers is F(n-3).
%H A242365 Clark Kimberling, <a href="/A242365/b242365.txt">Table of n, a(n) for n = 1..1500</a>
%e A242365 First 7 rows of the array:
%e A242365 1
%e A242365 2
%e A242365 4
%e A242365 8 ... 3
%e A242365 16 .. 6 ... 5
%e A242365 32 .. 12 .. 10 .. 9 ... 7
%e A242365 64 .. 24 .. 20 .. 18 .. 17 .. 15 .. 14 .. 13
%t A242365 z = 12; g[1] = {1}; f1[x_] := 2 x; f2[x_] := 1 - x; f3[x_] := 2 - x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]], f3[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; u = Table[g[n], {n, 1, 9}]
%t A242365 u1 = Flatten[u]  (* A242364 *)
%t A242365 v = Table[Reverse[Drop[g[n], Fibonacci[n - 1]]], {n, 1, z}]
%t A242365 v1 = Flatten[v]  (* A242365 *)
%t A242365 w1 = Table[Apply[Plus, g[n]], {n, 1, 20}]   (* A243735 *)
%t A242365 w2 = Table[Apply[Plus, v[[n]]], {n, 1, 10}] (* A243736 *)
%Y A242365 Cf. A242364, A243735, A243736, A242448, A000045.
%K A242365 nonn,easy,tabf
%O A242365 1,2
%A A242365 _Clark Kimberling_, Jun 11 2014