This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242394 #13 May 18 2014 11:13:02 %S A242394 6,18,30,42,54,66,66,102,114,126,138,150,150,162,198,210,222,234,222, %T A242394 270,258,294,306,318,330,330,366,354,390,402,390,426,450,462,450,486, %U A242394 474,486,510,546,558,546,558,594,606,630,642,654,618,678,690,690,726,738,750,738,750 %N A242394 Number of equilateral triangles (sides length = 1) that intersect the circumference of a circle of radius n centered at (0,0). %C A242394 For all n, there are at least 6 points where the transit of circumference occurs exactly at the corners. The rare case is when the transit occurs at 2 corners of a triangle, i.e., at n = 1, 13, 181, 35113, ... , (A001570(n)). The pattern repeats itself at every Pi/3 sector along the circumference. The triangle count per half sector by rows can be arranged as an irregular triangle as shown in the illustration. The rows count (A242396) is equal to the case centered at (1/2,0), A242395. %H A242394 Kival Ngaokrajang, <a href="/A242394/a242394_2.pdf">Illustration of initial terms</a> %H A242394 Kival Ngaokrajang, <a href="/A242394/a242394_1.pdf">Illustration for rare cases</a> %o A242394 (Small Basic) %o A242394 For n =1 To 100 %o A242394 r6=n*math.Sin(30*Math.Pi/180)/(Math.Power(3,0.5)/2) %o A242394 r6a=math.Round(r6) %o A242394 If r6-math.Floor(r6) >0.5 Then %o A242394 last=1 %o A242394 Else %o A242394 last=2 %o A242394 EndIf %o A242394 'find corner intersecting points----------------------- %o A242394 k=0 %o A242394 ic=0 %o A242394 h=Math.Power(1-0.5*0.5,0.5) %o A242394 c=math.Floor(n/h) %o A242394 For i = h To c Step h %o A242394 For j = 0.5 To n Step 0.5 %o A242394 r=Math.Power(i*i+j*j,0.5) %o A242394 If r = n Then %o A242394 k=k+1 %o A242394 EndIf %o A242394 EndFor %o A242394 EndFor %o A242394 if k > 1 then %o A242394 ic=math.Floor(k/3) %o A242394 EndIf %o A242394 '------------------------------------------------------ %o A242394 a=0 %o A242394 b=0 %o A242394 For ii=1 To r6a %o A242394 If ii=1 Then %o A242394 a=a+1 %o A242394 Else %o A242394 If ii = r6a Then %o A242394 a=a+last %o A242394 Else %o A242394 a=a+2 %o A242394 EndIf %o A242394 EndIf %o A242394 b=a %o A242394 EndFor %o A242394 if n =1 then %o A242394 aa = 1 %o A242394 Else %o A242394 aa =1*(a-2*ic)*2+1 %o A242394 endif %o A242394 TextWindow.Write(6*aa+", ") %o A242394 EndFor %Y A242394 Cf. A001570, A242118. %K A242394 nonn %O A242394 1,1 %A A242394 _Kival Ngaokrajang_, May 13 2014